锅炉汽包液位控制.docx

上传人:b****0 文档编号:17931298 上传时间:2023-08-05 格式:DOCX 页数:20 大小:273.14KB
下载 相关 举报
锅炉汽包液位控制.docx_第1页
第1页 / 共20页
锅炉汽包液位控制.docx_第2页
第2页 / 共20页
锅炉汽包液位控制.docx_第3页
第3页 / 共20页
锅炉汽包液位控制.docx_第4页
第4页 / 共20页
锅炉汽包液位控制.docx_第5页
第5页 / 共20页
锅炉汽包液位控制.docx_第6页
第6页 / 共20页
锅炉汽包液位控制.docx_第7页
第7页 / 共20页
锅炉汽包液位控制.docx_第8页
第8页 / 共20页
锅炉汽包液位控制.docx_第9页
第9页 / 共20页
锅炉汽包液位控制.docx_第10页
第10页 / 共20页
锅炉汽包液位控制.docx_第11页
第11页 / 共20页
锅炉汽包液位控制.docx_第12页
第12页 / 共20页
锅炉汽包液位控制.docx_第13页
第13页 / 共20页
锅炉汽包液位控制.docx_第14页
第14页 / 共20页
锅炉汽包液位控制.docx_第15页
第15页 / 共20页
锅炉汽包液位控制.docx_第16页
第16页 / 共20页
锅炉汽包液位控制.docx_第17页
第17页 / 共20页
锅炉汽包液位控制.docx_第18页
第18页 / 共20页
锅炉汽包液位控制.docx_第19页
第19页 / 共20页
锅炉汽包液位控制.docx_第20页
第20页 / 共20页
亲,该文档总共20页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

锅炉汽包液位控制.docx

《锅炉汽包液位控制.docx》由会员分享,可在线阅读,更多相关《锅炉汽包液位控制.docx(20页珍藏版)》请在冰点文库上搜索。

锅炉汽包液位控制.docx

锅炉汽包液位控制

XX城建大学

课程设计任务书

2021-2021学年第2学期

控制与机械工程学院电气工程及其自动化专业班级学号

课程设计名称:

过程控制

设计题目:

锅炉汽包液位控制

完成期限:

自2021年6月11日至2021年6月15日共1周

设计依据、要求及主要容:

一、设计任务

加热炉出口温度控制系统,测取温度对象的过程为:

当系统稳定时,在温度调节阀上做3%变化,输出温度记录如下:

t/min

0

2

4

6

8

10

12

270.0

270.0

267.0

264.7

262.7

261.0

259.5

t/min

14

16

18

20

22

24

26

258.4

257.8

257.0

256.5

256.0

255.7

255.4

t/min

28

30

32

34

36

38

40

255.2

255.1

255.0

255.0

255.0

255.0

255.0

试根据实验数据设计一个超调量

的无差控制系统。

具体要求如下:

(1)根据实验数据选择一定的辨识方法建立对象的数学模型;

(2)根据辨识结果设计符合要求的控制系统〔控制系统原理图、控制规律选择等〕;

(3)根据设计方案选择相应的控制仪表;

(4)对设计的控制系统进展仿真,整定运行参数。

二、设计要求

采用MATLAB仿真;需要做出以下结果:

〔1〕超调量

〔2〕峰值时间

〔3〕过渡过程时间

〔4〕余差

〔5〕第一个波峰值

〔6〕第二个波峰值

〔7〕衰减比

〔8〕衰减率

〔9〕振荡频率

〔10〕全部P、I、D的参数

〔11〕PID的模型

〔12〕设计思路

三、设计报告

课程设计报告要做到层次清晰,论述清楚,图表正确,书写工整;详见“课程设计报告写作要求〞。

四、参考资料

[1]何衍庆.工业生产过程控制〔1版〕.:

化学工业,2004

[2]邵裕森.过程控制工程.:

机械工业2000

[3]过程控制教材

 

指导教师〔签字〕:

系主任〔签字〕:

批准日期:

2021年6月1日

 

1、绪论

1.1锅炉的工作过程简介

锅炉是我国工业生产和日常生活中应用最广泛的热工设备。

锅炉的任务是根据外部负荷的变化,输送一定质量的蒸汽(蒸汽压力、蒸汽温度)和相应的蒸汽量。

它产生的蒸汽不仅可以为蒸馏、化学反响、枯燥等过程提供热源,而且可以作为风扇、压缩机和泵驱动涡轮机的动力源。

锅炉由“锅〞和“炉〞两局部组成。

“锅〞是锅炉的蒸汽水系统,如下图。

本实用新型由省煤器3、汽包4、下降管8、过热器5、上升管7、给水控制阀2、水母管1和蒸汽主管6组成。

锅炉给水泵进入省煤器,省煤器的水吸收烟气的热量,使温度在自身压力下升高到沸点,变成饱和水。

然后引入汽包。

滚筒中的水通过降液管进入锅炉底部的下部集管,并通过炉周围的水壁进入上部集箱。

然后返回到滚筒。

水从水冷壁管中吸收直接火焰辐射的热量.在恒温下,一局部水蒸发成蒸汽,蒸汽和水的混合物。

蒸汽和蒸汽的混合物在滚筒中被别离成水和蒸汽。

水和给水进入降液管参与循环。

蒸汽通过汽缸顶部的油管被带到过热器。

蒸汽在过热器中吸收热量,并将其加热到规定的温度。

成为合格的蒸汽输送主管。

图1.1锅炉的汽水系统

炉膛是由炉膜、烟道、燃烧器和空气预热器组成的锅炉燃烧系统。

锅炉燃料燃烧所需的空气通过空气预热器送至鼓风机,空气预热器吸收空气预热器中的烟气热量,形成热空气。

与燃料按一定比例燃烧到炉膛中。

所产生的热量被传送到蒸汽产生系统以产生饱和蒸汽。

然后通过过热器形成一定量的过热蒸汽并收集到蒸汽集管中。

负荷调节阀在一定压力下采用过热蒸汽。

同时,烟气在燃烧过程中产生大量的余热。

此外,饱和蒸汽转化为过热蒸汽,它还预热锅炉给水和空气,最后通过烟囱进入大气。

1.2锅炉汽包水位自动控制的意义

锅炉水位是保证锅炉平安运行的重要标志。

当水位过低时,负荷越大,汽化速度越快。

锅炉管中的水一旦完全蒸发,这会导致锅炉燃烧甚至爆炸,水位过高。

它影响锅炉汽缸的蒸汽别离,并产生蒸汽和液体相结合的现象,这是由过热器的关闭和结垢引起的。

同时过热的蒸汽温度也随之降低,易发生太阳涡轮叶片它影响机组运行的平安性和经济性。

随着锅炉容量的增加,水位变化越来越快,手工操作越来越繁重。

因此,迫切需要汽包水位的自动调节。

1.3锅炉液位控制的难点

液位控制技术是通过控制进、出口阀的开度和改变水的流量来实现的,而水温的控制那么是通过调节加热功率来实现的。

在锅炉控制系统中,锅炉液位控制尤为重要和困难。

在锅炉运行过程中,由于进水量和输出量的变化,PID控制器的参数难以调节。

以满足各种工况的要求,获得理想的控制效果。

过多的调整将导致频繁的流动回路运动,这将对下游设备造成额外的干扰。

这样,液位控制器通常处于欠调节状态,允许液位在一定围波动,从而减少输出水的变化。

然而,PID不能及时抑制大扰动,导致锅炉运行的平安性。

此外,液位波动也会影响锅炉运行的稳定性,使蒸汽输送难以控制。

影响锅炉水位的主要因素有给水流量、蒸汽出口流量和混合燃料进给率。

每个变量都有自己的干扰。

相对冷的供水造成相应的纯滞后。

蒸汽外流的突然增加引起了一种典型的“假水位〞现象,它暂时改变了过程的方向,导致误操作和事故。

2、汽包锅炉水位控制系统的设计

2.1概述

随着锅炉的出现,汽包水位的控制一直是控制领域中的一个典型问题。

随着控制理论、控制技术和现代控制方法的开展,锅炉自动化控制水平也在逐步提高。

在此期间,经历了30、40年代的单参数仪表控制、40年代组合仪表的综合参数仪表控制和60年代的计算机控制等几个阶段,通常有几种方案:

(1)单脉冲控制系统。

即汽包水位单回路水位控制系统;

(2)双冲量控制系统。

即在单冲量系统的根底上引入了蒸汽流量信号;

(3)三冲量控制系统。

是以双脉冲系统为根底,介绍了进水流量信号。

2.2单冲量控制系统

单脉冲水位控制系统将汽包水位作为唯一的控制信号,脉冲是可变的。

水位测量信号通过发射机发送到水位调节器。

根据汽包水位H的测量值与给定值H0之间的偏差,调节器通过执行器控制给水调节阀,以改变供水量。

使滚筒的水位保持在允许的围。

系统框图为图2.1所示。

图2.1单冲量控制系统框图

该控制系统构造简单,是典型的单回路定制控制系统。

在长的停留时间、稳定的负荷和鼓水的“假水位〞的情况下,采用单脉冲控制系统,PID调节一般能满足生产要求。

单脉冲汽包水位调节系统构造简单,汽包容量大,扰动后水位响应慢,“假水位〞现象严重。

单脉冲水位调节可满足生产要求。

单脉冲鼓式液位调节存在一些缺乏。

主要有:

〔1〕单脉冲控制方案仅根据水位信号控制供水。

当锅炉负荷变化很大时,也就是说,当阶跃扰动很大时,由于锅炉的“假水位〞现象,例如当负荷蒸汽增加时,水位首先升高。

调节器只使用水位作为控制信号来关闭小阀门以减少供水。

这种行为对于锅炉的流量平衡是不正确的,从而增加了蒸汽流量和给水流量的波动围。

扩大了进出口贸易的不平衡。

〔2〕)从供水扰动下水位变化的动态特征可以看出,当供水压力变化引起供水变化时,调整器直到水位变化后才开场运行。

但调整器作用后,必须经过一段时间的滞后时间,才能影响汽包的水位,因此,汽包水位波动较大,加工时间较长。

2.3双冲量控制系统

在汽包水位控制中,主要的干扰是负荷的变化。

双脉冲控制系统是以锅炉汽包水位测量信号为主控制信号,以蒸汽流量信号为前馈信号的前馈-反响控制系统。

系统框图为图2.2所示。

图2.2双冲量控制系统框图

双冲量控制系统的优点是:

蒸汽流量前馈信号的引入,可以消除“假水位〞带来的不利影响。

当蒸汽量发生变化时,可以产生与蒸汽一样方向的信号,以减少或消除由“假水位〞现象引起的虚假水位。

通过引入蒸汽流量的前馈信号,可以提高控制系统的静态特性。

提高控制质量。

双脉冲控制系统的问题是给水系统的扰动不能直接补偿,当供水受到干扰时,只有当水位信号发生变化,滞后时间较长时,才能由调整器进展调节。

水位波动很大。

2.4三冲量控制系统

2.4.1单级三冲量控制系统

三水锅炉给水自动控制系统是以给水水位H为主要控制信号,蒸汽流量D为前馈控制信号,给水流量W为反响控制信号的控制系统。

三冲量控制系统采用蒸汽量进展前馈控制。

当负荷(蒸汽流量)突然变化时,蒸汽流量信号可使给水调节阀开场向向移动,即当蒸汽流量增加时,供水调节阀翻开。

以弥补“虚假水位〞带来的误导。

如果给水流量降低,那么调节器根据减少的进水流量信号立即翻开进给阀,从而维持恒定的供水。

此外,给水流量信号也是调节器运行后的反响信号,可以使调节器尽早了解控制效果。

因此,采用三冲量控制系统可以加快调速器的动作速度,防止过大的调节,减少水位的波动。

防止逃跑。

系统框图为图2.3所示。

图2.3单级三冲量控制系统框图

从系统框图可以看出,单级三冲量控制系统有两个闭合回路:

一个是由供水流量W、给水变送器、调节器和调节阀组成的环,另一个是由汽包水位对象组成的主回路。

圈。

蒸汽流量D及其蒸汽发射机不包括在这两个闭环中。

然而,其引入可提高控制质量,不影响闭环稳定性。

因此,三冲量控制的本质是前馈加反响控制系统。

单级三冲量控制系统具有如下优点:

与单脉冲和双脉冲控制系统相比,其控制质量最好,能有效地满足系统对速度、稳定性和精度的要求,有效地防止了“假水位〞现象。

与单脉冲和双脉冲相比,最大的缺点是系统本钱高,系统复杂,不易设置。

2.4.2串级三冲量控制系统

随着生产过程向大、连续、强化方向开展,操作要求越来越严格,各参数之间的关系更加复杂,对控制精度和功能提出了新的要求。

因此,有必要在单回路的根底上采取其他措施,形成一个复杂的控制系统。

在图所示的三冲量串级控制系统的框图中,主调节器接收水位信号作为主控制信号,蒸汽流量信号控制二次调节器的给水设定值,除接收主调节器的设定信号外,还接收水流信号。

前馈信号用作给水流量前馈的前馈信号。

当蒸汽负荷突然变化时,蒸汽流量信号使给水调节阀立即向右移动,即当蒸汽流量增加时,供水调节阀大大翻开,从而抵消了由虚假水位引起的反响。

从而减小了水位和供水流量的波动围。

作为调节阀运行后的反响信号,给水流量信号可以使调整器尽早了解控制效果,并进展相应的调整。

系统框图为图2.4所示。

图2.4串级三冲量控制系统框图

在实际应用中,由于选择的控制阀不同,级联三脉冲的设计不同。

3、锅炉汽包水位的动态特性的数学建模

3.1给水流量作用下的动态特性

当水流量突然增加时,锅炉的蒸发量不变,流量大于蒸发率,但随着低温供水和节约用水,节约用水和节约用水的流量增加。

ING不会立即增加。

一些热量从原来的饱和蒸汽混合物中吸收,从而减少了外表以下气泡的体积。

事实上,由于水的温度远低于省煤器的温度,供水具有一定程度的过冷度。

当水进入省煤器时,一些蒸汽将转化为水,尤其是沸腾的省煤器。

给水降低了省煤器的沸腾程度。

省煤器蒸汽气泡的总体积减小,因此,首先用进入省煤器的水填充因气泡破裂体积减小而降低的省煤器水位,在一段时间之后,即使水位下降后,水位也上升,因为供水从省煤器连续进入滚筒。

在这个过程中,负荷不变,滚筒的水仍在蒸发,所以水位也在下降。

从H曲线可以清楚地看出。

给水被控对象的部扰动特征是,由于给水过冷的影响,当加水扰动时,水位H的变化非常缓慢,经过一段时间后水位的变化率逐渐增大。

最后,当质量不平衡起主要作用时,它以一定的速度直线上升。

如果水的供给和蒸汽的数量不平衡,水位不确定。

简要介绍了水位扰动下水位的传递函数。

根据物料不平衡与热平衡的关系,可将锅炉汽包水位调节对象的动态特性方程简化为:

〔3.1〕

式中:

h为汽包水位的高度;

为给水流量项的时间常数;

为蒸汽流量项的时间常数;

为蒸汽流量项的放大倍数;

为时间常数。

同时

的式子如下:

〔3.2〕

式中:

D为锅炉蒸汽流量;

W为锅炉给水流量。

可以看出,滚筒水位变化的扰动主要是蒸汽流(称为外部扰动)和水流(称为外部扰动)。

因此,汽包水位调节对象在供水作用下的运动方程可以表示为:

〔3.3〕

两边取拉氏变换,结合工程实际忽略较小的,在较长时间,随着供水量的增加,滚筒水位不增加。

因此,在给水流量作用下锅炉汽包水位的动态数学模型可以得到如下:

 〔3.4〕

3.2蒸汽流量扰动下的动态特性

当负荷变化时,汽包水位的动态特性有一个特殊的形式:

负荷增加时,蒸发量大于给水量,但水位不是下降反而迅速上升;负荷突然减小时,水位却先下降,然后迅速上升,这就是“虚假水位〞现象。

锅炉水位的变化与锅炉的运行特性有关。

几小时燃料的突然减少(例如,"假水位"在大约2分钟或4分钟到达最低水平)(例如,锅炉熄灭了火)。

在“假水位〞在20秒左右到达最低值,而“假水位〞到达最低值的时间与负荷到达最低值的时间根本一样。

水轮机甩负荷时出现的“假水位〞现象十分严重,给水位自动调节系统的组成带来了困难。

为了使水位保持在允许围,负荷和负荷变

化的变化应受到限制。

汽包水位调节对象的动态特性方程也可在外界干扰下得到:

〔3.5〕

对上式方程进展拉氏变换,并令

得到锅炉汽包水位在蒸汽流量作用下的动态数学模型如下:

〔3.6)

3.3根据所给数据进展曲线拟合

3.3.1相关MATLAB程序及结果

>>x=[0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40];

>>y=[270.0,270.0,267.0,264.7,262.7,261.0,259.5,258.4,257.8,257.0,256.5,256.0,255.7,255.4,255.2,255.1,255.0,255.0,255.0,255.0,255.0]

>>figure

(1);

>>subplot(2,1,1);

>>plot(x,y,'o');

>>aa=polyfit(x,y,5);

>>f_x=vpa(poly2sym(aa,'x'),4)

f_x=

5.124e-10*x^5-3.795e-8*x^4-7.444e-6*x^3+0.0007902*x^2-0.008607*x+0.6594

>>x=0:

5:

85;

>>subplot(2,1,2);

>>plot(x,polyval(aa,x),'r-o');

>>axis([08501.500])

图3.1拟合曲线

3.3.2控制变量确实定

通过现场数据采集和数据分析处理,最终得出锅炉汽包水位在给水流量作用下的动态数学模型:

〔3.7〕

通过对现场实测数据的分析和处理,得出锅炉汽包水位在蒸汽流量下的动态数学模型:

〔3.8〕

3.4串级三冲量的框图

 

 

图3.2汽包水位三冲量控制系统框图

图3.3单级三冲量控制系统框图

从系统框图可以看出,单级三冲量控制系统有两个闭合回路:

一个由供水流量W、给水变送器、调节器和调节阀组成;另一个是由汽包水位对象和T组成的主回路。

他心的循环。

蒸汽流量D及其蒸汽变送器不包括在两个闭环中。

但它的引入可以提高控制质量,不影响闭环操作的稳定性。

因此,三冲量控制的本质是前馈加反响控制系统。

单级三冲量控制系统具有如下优点:

相对单脉冲和双脉冲控制系统具有最正确的控制品质,能有效满足系统对快速性、稳定性和准确性的要求,并能有效地防止“虚假水位〞。

与单脉冲和双脉冲相比,最大的缺点是系统本钱高,系统复杂,不易设置。

4、硬件选择

4.1流量传感器选择

根据控制方案,流量传感器可用于测量水流量和蒸汽流量。

这两种信号可以有效地提高控制质量。

因此,合理选择流量传感器可以有效地改善整个流量传感器系统的控制质量。

众所周知,35t/h锅炉汽包水位应控制,即锅炉正常运行时每小时蒸发35吨蒸汽,即35吨水蒸发成蒸汽,当水位稳定时,供水为35m3/h。

正波自动化仪表生产的LUGB-99涡街流量计是一种基于卡门涡原理的新型流体振动流量计。

具有测量围宽、压力损失小、性能稳定、精度高、安装使用方便等优点。

它被广泛用于封闭工业管道中液体、蒸汽和蒸汽介质的体积和质量流量的测量。

4.2水位传感器选择

因为设计的目的是控制水位的稳定性,而整个控制系统是基于水位的准确测量,水位的准确测量直接关系到控制的质量。

水位传感器的合理选择是水位控制系统设计的关键。

鼓级应控制在300±10毫米。

根据过程控制仪表围的选择原那么,仪器围应为测量参数的4/3~3/2倍。

因此,所选择的传感器的最大围是400~450毫米。

滚筒的水位应控制在300±10毫米,因此所选水位传感器的精度应高于10/450=2.2%FS,因此测量精度的选择只能满足要求。

4.3电机的选择

电机是锅炉汽包供水的动力设备。

电动机的准确选择与汽包能否准确供水和影响汽包水位的稳定性有关。

锅炉的控制蒸发量为35t/h,鼓风机压力为50MPa,管径为50mm,因此电机的功率可估算如下:

(4.1)

从计算结果可以看出,功率为100kW的三相异步电动机完全能满足工作要求。

由于采用变频调速,无需选择绕线式异步电动机,鼠笼式电机可满足要求。

华力贝尔机电设备YJTG三相变频电机是专门设计用于变频调速的,可根据技术要求设定额定电压380V和额定功率100kW。

4.4接触器的选择

接触器是系统中使用的一种重要开关设备。

合理选择接触器,可以保证交流电动机能够准确、及时地启动和停顿。

通过分析,三相交流异步电动机的最大工作电流在50Hz交流电压下工作,其工作电流为:

(4.2)

因此,根据设计要求,宏利电气生产的HLC-3X系列空调接触器主要适用于50Hz或60Hz,当AC-7B额定工作电压为230V或480V时,额定电流为40A电路。

起动和控制三相交流电动机(压缩机)和其他三相负载,选择五套这种A型接触器可同时驱动电机以满足设计要求。

4.5阀的开闭选择形式

给水调节阀开合气的选择一般是从平安的角度考虑的,第一个依据是人员平安、生产平安和系统设备平安。

由于工业生产过程中的控制阀大多是气动控制阀,因此有必要对控制阀的开闭方式进展选择。

锅炉给水调节阀一般采用密闭式空气调节阀。

一旦发生事故,系统失控,供水调节阀处于全开状态,即锅炉不会因供水中断而烧毁,防止发生爆炸等事故。

5、PID参数的整定和SIMULINK仿真

5.1串级三冲量仿真电路图的搭建

图5.1串级三冲量仿真电路图

5.2串级三冲量PID参数的整定

图5.2主控制器PID

图5.3副控制器PID

无差控制,在运行300和450处加蒸汽扰动,抗干扰能力好

图5.4控制图像

超调量:

响应的最大偏离量

与终值

的差与终值

比的百分数,即

从图5.4估读:

延迟时间:

响应曲线第一次到达其终值一半所需的时间

=2.5s

上升时间:

响应从终值10%上升到终值90%所需的时间

=5s

峰值时间:

响应超过其终值到达第一个峰值所需的时间

=15s

调节时间:

响应到达并保持在终值

所需的时间

=25s

5.3仿真分析

采用主回路校正水位偏差,二次回路快速消除部扰动,前馈路径补偿外部干扰,克制假水位现象。

在串级三冲量给水控制系统中,给水流量扰动是一种部扰动,串级三冲量给水控制系统的主要调节任务是校正水位,这比单级三级冲激给水控制系统的工作更为合理。

前馈控制是基于前馈控制器来处理扰动信号,消除干扰对调节量的影响。

它是一种基于扰动的补偿控制,因此前馈控制又称为扰动补偿。

根据自动控制原理,扰动补偿属于开环控制。

前馈控制对系统的稳定性没有影响。

只要原系统稳定,前馈控制后系统仍保持稳定。

前馈控制只能补偿可测量的扰动。

前馈控制器的构造和参数取决于被控对象和干扰信道的特性。

仿真结果说明,串级三冲量给水控制系统对各种典型影响因素的干扰反响迅速,调节质量和精度较高,能够保持汽包水位的稳定。

确保机组平安稳定运行。

总结

控制锅炉汽包液位的任务是控制水的流量,保持蒸发的动态平衡,保持汽包液位在技术围,是保证锅炉平安运行的必要条件。

汽包液位控制系统是控制理论和过程控制技术在实际生产过程中的典型应用案例。

在生产现场采用的三冲量控制方法也是本文所讨论的三冲量控制方案。

大量实践证明,三冲量控制方案在锅炉汽包液位控制系统中是可行的,到达了预期的控制效果,到达了控制要求。

对提高生产效率和节约资源起到了明显的作用。

通过这一过程控制课程的设计,我们有着深刻的感受,不仅要复习和稳固书中所学到的知识,还要培养自己独立思考和解决问题的能力。

经过近一周的艰辛工作,我终于在规定的时间完成了这项任务。

通过对锅炉液位三冲量控制的深入了解,并结合我在多门专业课程中所学到的知识,进一步提高了我们综合运用知识的能力。

通过课程设计将专业知识联系起来,了解理论知识的重要性和广泛的应用,加深对专业、工程设计的理解。

让我在生产实践中了解更多,不能死板地抄袭书面知识,需要具体问题的具体分析,才能纠正和快速解决问题。

此外,让我明白在设计和制造的道路上,需要不断的探索和创造,坚持不懈,坚韧不拔。

这种设计经历使我受益匪浅。

 

参考文献

[1]王再英等,过程控制系统与仪表,机械工业,2006

[2]新民,王燕芳.微型计算机控制技术,高等教育,2001

[3]王锦标,计算机控制系统,清华大学,2021

[4]牛培峰等,过程控制系统,电子工业,2021

[5]过程控制教材

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 医药卫生

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2