等离子点火系统应用维护手册0515.docx

上传人:b****1 文档编号:1832042 上传时间:2023-05-01 格式:DOCX 页数:63 大小:866.75KB
下载 相关 举报
等离子点火系统应用维护手册0515.docx_第1页
第1页 / 共63页
等离子点火系统应用维护手册0515.docx_第2页
第2页 / 共63页
等离子点火系统应用维护手册0515.docx_第3页
第3页 / 共63页
等离子点火系统应用维护手册0515.docx_第4页
第4页 / 共63页
等离子点火系统应用维护手册0515.docx_第5页
第5页 / 共63页
等离子点火系统应用维护手册0515.docx_第6页
第6页 / 共63页
等离子点火系统应用维护手册0515.docx_第7页
第7页 / 共63页
等离子点火系统应用维护手册0515.docx_第8页
第8页 / 共63页
等离子点火系统应用维护手册0515.docx_第9页
第9页 / 共63页
等离子点火系统应用维护手册0515.docx_第10页
第10页 / 共63页
等离子点火系统应用维护手册0515.docx_第11页
第11页 / 共63页
等离子点火系统应用维护手册0515.docx_第12页
第12页 / 共63页
等离子点火系统应用维护手册0515.docx_第13页
第13页 / 共63页
等离子点火系统应用维护手册0515.docx_第14页
第14页 / 共63页
等离子点火系统应用维护手册0515.docx_第15页
第15页 / 共63页
等离子点火系统应用维护手册0515.docx_第16页
第16页 / 共63页
等离子点火系统应用维护手册0515.docx_第17页
第17页 / 共63页
等离子点火系统应用维护手册0515.docx_第18页
第18页 / 共63页
等离子点火系统应用维护手册0515.docx_第19页
第19页 / 共63页
等离子点火系统应用维护手册0515.docx_第20页
第20页 / 共63页
亲,该文档总共63页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

等离子点火系统应用维护手册0515.docx

《等离子点火系统应用维护手册0515.docx》由会员分享,可在线阅读,更多相关《等离子点火系统应用维护手册0515.docx(63页珍藏版)》请在冰点文库上搜索。

等离子点火系统应用维护手册0515.docx

等离子点火系统应用维护手册0515

QB/YTLY

国电电力烟台龙源电力技术有限公司企业标准

QB/YTLY-102007-2003

 

DLZ-200型等离子燃烧器

使用及维护说明书

 

2003-01-01发布2003-01-01实施

国电电力烟台龙源电力技术有限公司发布

QB/YTLY-102007-2003

前言

为了科学地建立健全企业标准体系和部门管理体系,指导和规范本企业开展标准化工作,推动开发部的部门职能,发挥主导部门的作用,根据龙源电力技术有限公司烟电经字〔2002〕1号文《关于修编制定公司标准体系实施方案的通知》的指示精神,按《企业标准体系的构成和编写的基本规定》的要求,以相关的国家标准,行业标准为依据,结合公司产品的实际情况,特制定本标准,本标准适用于国电电力烟台龙源电力技术有限公司开发部的工作。

本标准由烟台龙源电力技术有限公司总经理工作部提出。

本标准由烟台龙源电力技术有限公司开发部起草。

本标准由烟台龙源电力技术有限公司开发部负责管理和解释。

起草人:

唐宏、陈学渊、纪少华、张孝勇、程耀彬、李春岩、刘鹏、李本伟、薛若连

审核:

张孝勇

审定:

唐宏

批准:

王公林

 

目录

 

O安全措施0

第一章绪论1

第二章等离子燃烧器工作原理2

第三章等离子点火燃烧系统构成5

第四章等离子点火系统的安装22

第五章等离子点火系统的调试28

第六章等离子点火系统的运行39

第七章等离子点火系统的维护47

0安全措施

本说明书声明:

列出了等离子点火煤粉燃烧器安全和可靠运行所需的所有措施,对特殊的应用,可能需要附加补充资料和说明书,如果遇到这种情况,请与烟台龙源公司最近的办事处或直接与本部联系:

以求技术支援;如果在修理等离子点火煤粉燃烧器时使用了未经厂家认可的零件,或是由不具备资格的人员进行不正确的操作将会增加出现危险的机会,这将导致事故的发生及设备损坏。

本手册所有安全提示请严格遵守。

请仔细阅读本说明书所提供的安全信息。

警告!

在设备运行过程中,本装置电子发射枪将出现危险电压,切勿触摸。

否则,将导致死亡和严重的人身伤害以及财产损失。

本装置电子发射枪被罩在一个安全防护罩内,防护罩下部为电气,冷却水进、出接口,此部位有可能引发故障,非专业维护人员切勿接近。

只有首先完全熟悉本使用说明书所包括的安全注意事项,结构安装,操作以及维护说明的相当熟练的人员才能从事本装置的工作。

本装置成功和安全的运行依赖于精心的运输和适当的保管,以及正确的连接,操作安装和维护。

即使是在等离子发生器不工作时,电源柜进线及隔离变压器亦带有危险电压,非停电状态,切勿进行任何工作,在从事任何维护和修理工作之前,电源柜所有电源必须切断并挂警示牌!

 

第一章绪论

大型工业煤粉锅炉的点火和稳燃传统上都是采用燃烧重油或天然气等稀有燃料来实现的,近年来,随着世界性的能源紧张,原油价格不断上涨,火力发电燃油愈来愈受到限制。

因此锅炉点火和稳燃用油被做为一项重要的指标来考核,为了减少重油(天然气)的耗量,传统的做法是提高煤粉的磨细度,提高风粉混合物和二次风的预热温度,采用预燃室燃烧器,选用小油枪点火等等,但是,这些方法已到了尽头,若要进一步减少燃油到最终不用油,必须采用与传统上完全不同的全新工艺,这种工艺应既可保证提高燃烧过程的经济性,又可以改善火电厂的生态条件——DLZ-200型等离子煤粉点火燃烧器,采用直流空气等离子体做为点火源,可点燃挥发份较低的(10%)贫煤,实现锅炉的冷态启动而不用一滴油,是未来火力发电厂点火和稳燃的首选设备,采用等离子点火燃烧器,点火和稳燃与传统的燃油相比有以下几大优点:

1)经济:

采用等离子点火运行和技术维护费仅是使用重油点火时费用的15%~20%,对于新建电厂,可以节约上千万的初投资和试运行费用;

2)环保:

由于点火时不燃用油品,电除尘装置可以在点火初期投入,因此,减少了点火初期排放大量烟尘对环境的污染;另外,电厂采用单一燃料后,减少了油品的运输和储存环节,亦改善了电厂的环境;

3)高效:

等离子体内含有大量化学活性的粒子,如原子(C、H、O)、原子团(OH、H2、O2)、离子(O2-、H2-、OH-、O-、H+)和电子等,可加速热化学转换,促进燃料完全燃烧;

4)简单:

电厂可以单一燃料运行,简化了系统,简化了运行方式;

5)安全:

取消炉前燃油系统,也自然避免了经常由于燃油系统造成的各种事故。

结论:

既然采用等离子技术点燃煤粉锅炉经济、高效、简单、安全、环保,有百利而无一害,当然是燃煤锅炉的首选设备,是目前燃油系统改造的最佳替代产品。

第二章等离子点火煤粉燃烧器工作原理

2.1点火机理

本装置利用直流电流(280---350A)在介质气压0.01-0.03Mpa的条件下接触引弧,并在强磁场下获得稳定功率的直流空气等离子体,该等离子体在燃烧器的一次燃烧筒中形成T>5000K的梯度极大的局部高温区,煤粉颗粒通过该等离子“火核”受到高温作用,并在10-3秒内迅速释放出挥发物,并使煤粉颗粒破裂粉碎,从而迅速燃烧。

由于反应是在气相中进行,使混合物组分的粒级发生了变化。

因而使煤粉的燃烧速度加快,也有助于加速煤粉的燃烧,这样就大大地减少促使煤粉燃烧所需要的引燃能量E(E等=1/6E油)

等离子体内含有大量化学活性的粒子,如原子(C、H、O)、原子团(OH、H2、O2)、离子(O2-、H2-、OH-、O-、H+)和电子等,可加速热化学转换,促进燃料完全燃烧,除此之外,等离子体对于煤粉的作用,可比通常情况下提高20%~80%的挥发份,即等离子体有再造挥发份的效应,这对于点燃低挥发份煤粉强化燃烧有特别的意义。

2.2等离子发生器工作原理

图2.1等离子发生器工作原理图

本发生器为磁稳空气载体等离子发生器,它由线圈、阴极、阳极组成。

其中阴极材料采用高导电率的金属材料或非金属材料制成。

阳极由高导电率、高导热率及抗氧化的金属材料制成,它们均采用水冷方式,以承受电弧高温冲击。

线圈在高温250℃情况下具有抗2000V的直流电压击穿能力,电源采用全波整流并具有恒流性能。

其拉弧原理为:

首先设定输出电流,当阴极3前进同阳极2接触后,整个系统具有抗短路的能力且电流恒定不变,当阴极缓缓离开阳极时,电弧在线圈磁力的作用下拉出喷管外部。

一定压力的空气在电弧的作用下,被电离为高温等离子体,其能量密度高达105~106W/cm2,为点燃不同的煤种创造了良好的条件。

2.3燃烧机理

 

图2.2燃烧机理图

根据高温等离子体有限能量不可能同无限的煤粉量及风速相匹配的原则设计了多级燃烧器。

它的意义在于应用多级放大的原理,使系统的风粉浓度、气流速度处于一个十分有利于点火的工况条件,从而完成一个持续稳定的点火、燃烧过程。

实验证明运用这一原理及设计方法使单个燃烧器的出力可以从2T/H扩达到10T/H。

在建立一级点火燃烧过程中我们采用了将经过浓缩的煤粉垂直送入等离子火炬中心区,10000℃的高温等离子体同浓煤粉的汇合及所伴随的物理化学过程使煤粉原挥发份的含量提高了80%,其点火延迟时间不大于1秒。

点火燃烧器的性能决定了整个燃烧器运行的成败,在设计上该燃烧器出力约为500~800kg/h,其喷口温度不低于1200℃。

另外我们加设了第一级气膜冷却技术避免了煤粉的贴壁流动及挂焦,同时又解决了燃烧器的烧蚀问题。

该区称为第一区。

第二区为混合燃烧区,在该区内一般采用“浓点浓”的原则,环形浓淡燃烧器的应用将淡粉流贴壁而浓粉掺入主点火燃烧器燃烧。

这样做的结果既利于混合段的点火,又冷却了混合段的壁面。

如果在特大流量条件还可采用多级点火。

第三区为强化燃烧区,在一、二区内挥发分基本燃尽,为提高疏松炭的燃尽率采用提前补氧强化燃烧措施,提前补氧的原因在于提高该区的热焓进而提高喷管的初速达到加大火焰长度提高燃尽度的目的,所采用的气膜冷却技术亦达到了避免结焦的目的(1998年获专利)。

第四区为燃尽区,疏松碳的燃尽率,决定于火焰的长度。

随烟气的温升燃尽率逐渐加大。

第三章等离子点火燃烧系统组成

3.1等离子点火燃烧系统

3.1.1燃烧系统

等离子燃烧器是借助等离子发生器的电弧来点燃煤粉的煤粉燃烧器,与以往的煤粉燃烧器相比,等离子燃烧器在煤粉进入燃烧器的初始阶段就用等离子弧将煤粉点燃,并将火焰在燃烧器内逐级放大,属内燃型燃烧器,可在炉膛内无火焰状态下直接点燃煤粉,从而实现锅炉的无油启动和无油低负荷稳燃。

 

如图3.1所示,等离子发生器产生稳定功率的直流空气等离子体,该等离子体在燃烧器的中心筒中形成T>5000K的梯度极大的局部高温区,煤粉颗粒通过该等离子“火核”受到高温作用,并在10-3秒内迅速释放出挥发物,并使煤粉颗粒破裂粉碎,从而迅速燃烧。

由于反应是在气相中进行,使混合物组分的粒级发生了变化,因而使煤粉的燃烧速度加快,也有助于加速煤粉的燃烧,这样就大大地减少促使煤粉燃烧所需要的引燃能量E(E等=1/6E油)。

除此之外,等离子体有再造挥发份的效应,这对于点燃贫煤强化燃烧有特别的意义。

根据有限的点火功率不可能直接点燃无限的煤粉量的问题,等离子燃烧器采用了多级燃烧结构,如图3.1所示,煤粉首先在中心筒中点燃,进入中心筒的粉量根据燃烧器的不同在500~800kg/h之间,这部分煤粉在中心筒中稳定燃烧,并在中心筒的出口处形成稳定的二级煤粉的点火源,并以次逐级放大,最大可点燃12T/H的粉量。

为了扩大燃烧器对一次风速的适应范围,等离子燃烧器的最后一级煤粉可不在燃烧室内燃烧而直接进入炉膛,因为煤粉燃烧后的热量使得空气体积迅速膨胀,受燃烧器内空间的限制,燃烧室内的风速会成倍提高,造成火焰扩散的速度小于煤粉的传播速度而使燃烧不稳,当采取前面所述措施后,有利于减小燃烧室内的风速,使燃烧稳定。

实际的运行实践证明:

采用最后一级煤粉进入炉膛内燃烧的结构,燃烧的稳定度大大提高,对风速的要求降低了30%,煤粉的然尽度也大大提高(如图3.2所示)。

煤粉的浓度影响煤粉的着火温度,在点火区适当提高煤粉浓度有利于点火。

等离子燃烧器内通过采用撞击式浓缩块获得点火区的相对较高浓度。

对于现场燃烧器前有弯头的锅炉,因弯头的离心浓淡作用及现场安装位置的限制,有可能会造成中心筒点火区的浓度降低,为了解决这个问题同时减小改造工作量,可在弯头内加入弯板或扭转板,改变进入点火区的能浓度分布(如图3.2所示)。

图3.2示意图

由于等离子燃烧器采用内燃方式,燃烧器的壁面要承受高温,因此加入了气膜冷却风(如图3.1所示),避免了火焰和壁面的直接接触,同时也避免了煤粉的贴壁流动及挂焦。

为了减小燃烧器的尺寸,也可采取用一次风直接冷却的办法但须在燃烧器壁面上增加壁温测点(如图3.2所示),以防止燃烧器因超温而被烧蚀。

对温度的测量采用K分度凯装热电偶,热电偶的外径3mm,具有很好的挠性,可直接从伸到炉外热电偶导管插入到测点,再用螺母固定到导管上,具有良好的可更换性。

热电偶的测温范围为0~800℃,燃烧器的长期壁温应控制在600℃以内,如果超温,可采取提高一次风速和降低一次风浓度的手段进行降温。

图3.3为徐州电厂200MW机组等离子燃烧器壁温监测曲线。

 

等离子燃烧器的高温部分采用高耐热铸钢,其余和煤粉接触部位采用高耐磨铸钢。

和现场管路连接时须正确选用焊条型号。

等离子燃烧器按功能可分为两类:

1、仅作为点火燃烧器使用,这种等离子燃烧器用于代替原油燃烧器,起到启动锅炉和在低负荷助燃的作用。

采用该种燃烧器需为其附加给粉系统,包括一次风管路及给粉机;2、既作为点火燃烧器又作为主燃烧器使用,这种等离子燃烧器具有和1所述同样的功能,在锅炉正常运行时又可作为主燃烧器投入。

采用此种方式不需单独铺设给粉系统。

等离子燃烧器和一次风管路的连接方式做成和原燃烧器相同,改造工作量小。

3.1.2风粉系统

3.1.2.1给粉机

为满足等离子燃烧器对于煤粉浓度和均匀性的要求并能做主燃烧器使用,与等离子燃烧器相匹配的给粉机选择,应满足做主燃烧器使用时燃烧器的最大出力,100MW及以下等级的锅炉,与等离子燃烧器匹配的给粉机额定出力以2-6t/h为宜。

对200MW及以上容量的锅炉,一般选用给粉机的额定出力在3-9t/h为宜。

3.1.2.2磨煤机

A对于新建机组,选定的点火用磨煤机,最低出力应能满足最低投入功率的要求,MPS中速磨宜采用可变加载型。

B根据磨煤机的型式,调整其出力和细度至最佳状态,例如:

适当调整回粉门的开度、调整分离器开度,适当减小一次风量(但风量的调整应满足一次风管的最低流速,中速磨最低风量应保证允许的风环风速),对于MPS中速磨煤机还应适当调整碾磨压力。

3.1.2.3暖风器

主要应包括暖风器进出口风道的连接方式、支吊架的位置、整体重量、入口蒸汽管道尺寸及连接方式、出口疏水管道尺寸及连接方式、投运前是否需要对蒸汽管道进行吹扫等。

3.1.2.4一次风系统

A应根据锅炉燃用煤种、炉型和容量、制粉燃烧系统各自的特点,进行系统配套、结构和参数选择。

中储式制粉系统100MW及以下机组宜选择另设等离子燃烧器的系统;直吹式制粉系统宜采用主燃烧器兼有等离子点火功能的系统。

B采用直吹式制粉系统的锅炉,宜采用本炉冷炉制粉的方式

C制粉用热风的来源,在有条件时宜采用邻炉热风。

在邻炉来热风有困难时,宜在磨煤机入口热风道上或专设旁路风道上加装空气加热装置,将磨煤机入口风温加热至允许启磨温度。

加热装置宜采用蒸汽加热器。

如热风温度要求较高时,可采取串联安装风道燃烧器加热等方式。

D磨煤机对应的所有煤粉输送管道,应设有进行冷态、热态输粉风(一次风)调平衡的阀门;宜加装煤粉分配器等措施,以尽可能保持各煤粉输送管道内风速一致、煤粉浓度一致、煤粉细度一致。

E等离子燃烧器在锅炉点火启动初期,燃烧的煤粉浓度较好的适用范围在0.36…0.52kg/kg,最低不得低于0.3kg/kg。

F锅炉冷态启动初期,等离子燃烧器的一次风速保持在19m/s…22m/s为宜。

热态或低负荷稳燃时,一次风速保持24…28m/s为宜。

3.1.2.5气膜风系统

等离子燃烧器属于内燃式燃烧器,运行时燃烧器内壁热负荷较高,为了保护燃烧器,同时提高燃尽度,需设置等离子燃烧器气膜冷却风。

气膜冷却风可以从原二次风箱取,也可从送风机出口引取。

通过燃烧器气膜风入口引入燃烧器。

气膜冷却风控制,冷态一般在等离子燃烧器投入0…30min,开度尽量小,以提高初期燃烧效率,随着炉温升高,逐渐开大风门,防止烧损燃烧器,原则是以燃烧器壁温控制在500…600℃为宜。

3.1.2.6二次风系统

对于单独设置等离子点火一次风管路(等离子燃烧器作为点火用燃烧器)的系统,除设置等离子燃烧器气膜风系统外,原则上还应设置二次风系统。

其设计原则与电站锅炉常规燃烧器设计方案相同。

3.2等离子点火器系统

3.2.1等离子发生器

等离子发生器是用来产生高温等离子电弧的装置,其主要由阳极组件、阴极组件、线圈组件三大部分组成,还有支撑托架配合现场安装。

等离子发生器设计寿命为5~8年。

阳极组件与阴极组件包括用来形成电弧的两个金属电极阳极与阴极,在两电极间加稳定的大电流,将电极之间的空气电离形成具有高温导电特性等离子体,其中带正电的离子流向电源负极形成电弧的阴极,带负电的离子及电子流向电源的正极形成电弧的阳极。

线圈通电产生强磁场,将等离子体压缩,并由压缩空气吹出阳极,形成可以利用的高温电弧。

3.4等离子点火器外形图

3.2.1.1阳极组件

阳极组件由阳极、冷却水道、压缩空气通道及壳体等构成。

阳极导电面为具有高导电性的金属材料铸成,采用水冷的方式冷却,连续工作时间大于500小时。

为确保电弧能够尽可能多的拉出阳极以外,在阳极上加装压弧套。

3.2.1.2阴极组件

阴极组件由阴极头、外套管、内套管、驱动机构、进出水口、导电接头等构成,阴极为旋转结构的等离子发生器还需要加装一套旋转驱动机构。

阴极头导电面为具有高导电性的金属材料铸成,采用水冷的方式冷却,连续工作时间大于50小时。

3.2.1.3线圈组件

线圈组件由导电管绕成的线圈、绝缘材料、进出水接头、导电接头、壳体等构成。

导电管内通水冷却,寿命为5年。

3.2.2等离子电气系统

等离子发生器电源系统是用来产生维持等离子电弧稳定的直流电源装置。

其基本原理是通过三相全控桥式晶闸管整流电路将三相交流电源变为稳定的直流电源。

其由隔离变压器和电源柜两大部分组成。

电源柜内主要有由六组大功率晶闸管组成的三相全控整流桥、大功率直流调速器6RA70、直流电抗器、交流接触器、控制PLC等。

3.2.2.1隔离变压器

3.5隔离变压器外形图

等离子电源系统用隔离变压器参数:

额定电压:

0.38/0.36KV

额定功率:

200KVA

额定频率:

50HZ

相数:

三相

接线方式:

Δ/Y

冷却风式:

自然冷却

绝缘等级:

F

绝缘水平:

AC3/3

温升:

100K

选用材料:

30Q130冷轧有取向硅钢片、环氧树脂真空浇注.

隔离变压器的主要作用是隔离。

一次绕阻接成三角形,使3次谐波能够通过,减少高次谐波的影响;二次绕组接成星型,可得到零线,避免等离子发生器带电。

3.2.2.2电源柜

电源柜选用德国RITTAL公司生产的PS4000型电源柜,柜体外形尺寸及安装尺寸如下图所视:

 

 

3.6电源柜外形图

电源柜为前后开门结构。

前门上方安装有三块表从左到右分别为系统实际电压表、系统实际电流表、系统给定电流表,下方为排气孔。

电源柜技术参数如下:

额定输入电压

(1):

3AC400(+15%/-20%)

额定输入电流:

332A

额定频率:

45-65HZ

额定直流输出电压:

485V

额定直流输出电流:

400A

过载能力:

180%

额定输出功率:

194KW

额定直流电流下的功耗:

1328W

电子电路电源

额定供电电压:

2AC380(-25%)~460(+15%);In=1A或

1AC190(-25%)~230(+15%);In=2A

(-35%1分钟)

冷却风扇

额定电压:

3AC400(15%)50HZ

额定电流:

0.3A

额定流量:

570m3/h

噪音等级:

73dBA

运行环境温度:

0~40℃

(2)强迫风冷

存储和运输温度:

-25~+70℃

安装海拔高度:

额定直流电流下≦1000M(3)

环境等级(DINIEC721-3-3):

3K3

防护等级(DIN40050IEC144):

IP00

说明:

(1)电源柜进线电压可低于额定电压(由参数P078设置,400V装置可用于85V输入电压)。

输出电压也相应降低。

(2)指定的直流输出电压,在进线电压低于5%(额定输入电压)时也能达到。

(3)负载系数K1(直流电流)同冷却温度有关。

(4)负载系数K2与安装高度有关。

(5)总的衰减系数K=K1×K2。

电源柜正面视图如图3.7所示,电源柜后视图如图3.8所示。

 

3.7电源柜正面图

3.8电源柜后视图

其中主要部件为:

①冷却风机:

用来冷却柜内控制元件。

②整流装置。

③熔断器:

电流过载保护。

④电源开关:

控制电源柜内冷却风机的启停。

⑤电源开关:

电源柜控制电源。

⑥端子排:

电源柜与外部设备的接口。

⑦直流控制器6RA70。

图十直流控制器原理图

⑧直流平波电抗器。

⑨控制变压器:

将柜内交流380V电源转变成交流220V电源供控制回路使用。

⑩直流24V电源:

用于电极的接触检测。

图十一电源柜原理图

3.9电源柜原理接线图

3.2.2.2.1整流电路

V1-V6六个晶闸管(KP1000A/1200V)接成三相全控整流桥。

三相桥式全控整流电路为三相半波共阴极组与共阳极组的串联,因此整流电路在任何时刻都必须有两个晶闸管导通,才能形成导电回路,其中一个晶闸管是共阴极的,另一个晶闸管是共阳极的,所以必须对两组中要导通的一对晶闸管同时给触发脉冲。

可采用两种办法:

一种是给每个触发脉冲的宽度大于60º(一般取80º∽100º),称宽脉冲触发;另一种是在触发某一号晶闸管的同时给前一号晶闸管补发一个脉冲,相当于用两个窄脉冲等效替代大于60º的宽脉冲,称双脉冲触发。

等离子电源柜采用的是双脉冲触发方式。

 

3.10整流原理图

3.2.2.2.2SIEMENS大功率直流调速装置67RA70

SIEMENS大功率直流调速装置6RA70是给直流调速电机配备的调速器,其内部有两套整流电路分别用于电机电枢回路和电机的励磁回路。

电机电枢回路采用的是三相全控桥式整流电路,励磁回路采用的是单向全控桥式整流电路。

等离子电源柜正是采用6RA70的电枢回路来提供稳定的直流电源。

3.2.2.2.3直流电抗器

直流平波电抗器,由于DLZ-200型等离子发生器是直流接触引弧,因此在启动阶段电源要工作在低电压(0~20V),大电流(260~300A)的短路状态,这对功率组件是极其不利的。

同时,由于等离子发生器在引弧瞬间会产生强烈的冲击负荷,即使是在正常工作情况下,由于电弧在阴极和阳极之间旋转产生电压跳变,也要求电源要有极强的恒流能力。

这就要求平波电抗器要有足够的感抗。

从平波的角度讲当然是电感量越大越好,但是一味的增加电感抗,不仅会增加设备的成本,同时由于其尺寸过于庞大而不利于设备的推广使用。

因此,在电抗容量设计上,通过大量实验工作最后定为500A,2.1MH的电抗器,其平波效果较为理想。

3.2.2.2.4控制PLC

选用S7-200CPU224可编程控制器来对直流电源和电极动作进行控制,实现等离子点火器的自动点火。

具体方案如下:

·使用USS协议通过CPU224上的通讯口PORT0与6RA70的通讯口X172之间的进行数据交换,以完成对主电路的操作控制和各类状态信息的读出和条件判断等,实现直流电源的控制。

·电极控制信号及点火必须的压缩空气压力、冷却水压力等信号直接接入CPU224固有的开关量输入输出。

·通过扩展EM277DP模块与主站S7-300完成数据交换,实现集中控制。

EM277模块配置为16字入/16字出模式。

·通过CPU224内部的逻辑运算,实现点火装置的自动控制。

按等离子发生器工作的特点和要求编制的控制程序保证了点火过程可顺利地进行,并对点火工作过程各装置提供了有效的监控和保护。

根据系统要求启动等离子点火装置要分遥控/本控两种方式。

在本控操作时,通过电气操作柜对直流电流和阴极位置可以随时进行必要的调整,以适应不同煤种和工况条件下的点火参数需求。

3.2.3等离子空气系统

压缩空气是等离子电弧的介质,等离子电弧形成后,通过线圈形成的强磁场的作用压缩成为压缩电弧,需要压缩空气以一定的流速吹出阳极才能形成可利用的电弧。

因此,等离子点火系统的需要配备压缩空气系统,压缩空气的要求是洁净的而且是压力稳定的。

具体实现方案如下:

1)压缩空气有空压机经过滤装置储气罐出口母管的管道分别送到等离子点火装置。

2)等离子点火装置上的压缩空气管道上设有压力表和一个压力开关,把压力满足信号送回本燃烧器整流柜。

3)等离子点火装置入口的压缩空气压力要求不大于0.02MPa,每台等离子装置的压缩空气流量约为1.0NM3/min-1.5NM3/min。

4)压缩空气系统中同时设计有备用吹扫空气管路,吹扫空气取自图像火检

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 表格模板 > 合同协议

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2