功率半导体器件基本原理第10章精.docx

上传人:b****1 文档编号:2329369 上传时间:2023-05-03 格式:DOCX 页数:23 大小:273.20KB
下载 相关 举报
功率半导体器件基本原理第10章精.docx_第1页
第1页 / 共23页
功率半导体器件基本原理第10章精.docx_第2页
第2页 / 共23页
功率半导体器件基本原理第10章精.docx_第3页
第3页 / 共23页
功率半导体器件基本原理第10章精.docx_第4页
第4页 / 共23页
功率半导体器件基本原理第10章精.docx_第5页
第5页 / 共23页
功率半导体器件基本原理第10章精.docx_第6页
第6页 / 共23页
功率半导体器件基本原理第10章精.docx_第7页
第7页 / 共23页
功率半导体器件基本原理第10章精.docx_第8页
第8页 / 共23页
功率半导体器件基本原理第10章精.docx_第9页
第9页 / 共23页
功率半导体器件基本原理第10章精.docx_第10页
第10页 / 共23页
功率半导体器件基本原理第10章精.docx_第11页
第11页 / 共23页
功率半导体器件基本原理第10章精.docx_第12页
第12页 / 共23页
功率半导体器件基本原理第10章精.docx_第13页
第13页 / 共23页
功率半导体器件基本原理第10章精.docx_第14页
第14页 / 共23页
功率半导体器件基本原理第10章精.docx_第15页
第15页 / 共23页
功率半导体器件基本原理第10章精.docx_第16页
第16页 / 共23页
功率半导体器件基本原理第10章精.docx_第17页
第17页 / 共23页
功率半导体器件基本原理第10章精.docx_第18页
第18页 / 共23页
功率半导体器件基本原理第10章精.docx_第19页
第19页 / 共23页
功率半导体器件基本原理第10章精.docx_第20页
第20页 / 共23页
亲,该文档总共23页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

功率半导体器件基本原理第10章精.docx

《功率半导体器件基本原理第10章精.docx》由会员分享,可在线阅读,更多相关《功率半导体器件基本原理第10章精.docx(23页珍藏版)》请在冰点文库上搜索。

功率半导体器件基本原理第10章精.docx

功率半导体器件基本原理第10章精

Chapter10

Synopsis

PowerdevicesarerequiredforsystemsthatoperateoverabroadspectrumofpowerlevelsandfrequenciesasdiscussedinChap.1.Avarietyofpowerrectifierandtransistorstructureswerediscussedinpreviouschaptersforservingtheseapplications.Althoughthebipolarpowertransistorandthethyristorwerethefirsttechnologiesdevelopedforthispurpose,theyhavebeenreplacedbypowerMOSFETandIGBTstructuresinmodernapplicationsduetotheresultingsimplificationofthecontrolcircuitandeliminationofsnubbers.Thechoiceoftheoptimumdevicesuitableforanapplicationdependsuponthedevicevoltageratingandthecircuitswitchingfrequency.Fromthepointofviewofpresentingaunifiedtreatment,itisconvenienttoanalyzeatypicalpulse-width-modulated(PWM)motorcontrolcircuitasanexamplebecauseitisutilizedforbothlow-voltageapplications,suchasdiskdrivesincomputers,andhigh-voltageapplications,suchasthedrivetraininhybridelectricvehiclesandelectriclocomotives.

10.1TypicalH-BridgeTopology

ThecontrolofmotorsusingPWMcircuitsistypicallyperformedbyusingtheH-bridgeconfigurationshowninFig.10.1.Inthisfigure,thecircuithasbeenimplementedusingfourIGBTdevicesastheswitchesandfourP–i–Nrectifiersasthefly-backdiodes.ThisisthecommonlyusedtopologyformediumandhighpowermotordriveswheretheDCbusvoltageexceeds200V.WhentheH-bridgetopologyisusedforapplicationsthatoperatefromalowDCbusvoltage,itistypicallyimplementedusingfourpowerMOSFETdevicesastheswitchesandfourSchottkyrectifiersasthefly-backdiodes.

ThedirectionofthecurrentflowinthemotorwindingcanbecontrolledwiththeH-bridgeconfiguration.IfIGBT-1andIGBT-4areturnedonwhile

B.J.Baliga,FundamentalsofPowerSemiconductorDevices,doi:

10.1007/978-0-387-47314-7_10,©SpringerScience+BusinessMedia,LLC2008

1028FUNDAMENTALSOFPOWERSEMICONDUCTORDEVICES

maintainingIGBT-2andIGBT-3intheirblockingmode,thecurrentinthemotorwillflowfromtheleftsidetotherightsideinthefigure.ThedirectionofthecurrentflowcanbereversedifIGBT-3andIGBT-2areturnedonwhilemaintainingIGBT-1andIGBT-4intheirblockingmode.Alternately,themagnitudeofthecurrentflowcanbeincreasedordecreasedbyturningontheIGBTdevicesinpairs.Thismethodallowssynthesisofasinusoidalwaveformacrossthemotor

1

Synopsis1029

Thetypicalwaveformsforthecurrentandthevoltageacrossthepowertransistorandthefly-backdiodeareillustratedinFig.10.2duringjustonecycleofthePWMoperation.Thesewaveformshavebeenlinearizedforsimplificationoftheanalysis.2Thecyclebeginsattimet1whenthetransistoristurnedonbyitsgatedrivevoltage.Priortothistime,thetransistorissupportingtheDCsupplyvoltageandthefly-backdiodeisassumedtobecarryingthemotorcurrent.Asthetransistorturnson,themotorcurrentistransferredfromthediodetothetransistorduringthetimeintervalfromt1tot2.InthecaseofhighDCbusvoltages,whereP–i–Nrectifiersareutilized,thefly-backdiodewillnotbeabletosupportvoltageuntilthestoredchargeinitsdriftregionisremovedasdiscussedinChap.5.Toachievethis,theP–i–Nrectifiermustundergoitsreverserecoveryprocess.Duringreverserecovery,substantialreversecurrentflowsthroughtherectifierwithapeakvalueIPRreachedattimet2.Thelargereverserecoverycurrentproducessignificantpowerdissipationinthediode.Moreover,thecurrentintheIGBTattimet2isthesumofthemotorwindingcurrentIMandthepeakreverserecoverycurrentIPR.Thisproducessubstantialpowerdissipationinthetransistorduringtheturn-ontransient.Thepowerdissipationinboththetransistorandthediodeisthereforegovernedbythereverserecoverycharacteristicsofthepowerrectifier.

Thepowertransistoristurnedoffattimet4allowingthemotorcurrenttotransferfromthetransistortothediode.Inthecaseofaninductiveload,suchasmotorwindings,thevoltageacrossthetransistorincreasesbeforethecurrentisreducedasillustratedinFig.10.2duringthetimeintervalfromt4tot5.Subsequently,thecurrentinthetransistorreducestozeroduringthetimeintervalfromt5tot6.Theturn-offdurationsaregovernedbythephysicsofthetransistorstructureasdiscussedinpreviouschapters.Consequently,thepowerdissipationinboththetransistorandthediodeduringtheturn-offeventisdeterminedbythetransistorswitchingcharacteristics.

Inadditiontothepowerlossesassociatedwiththetwobasicswitchingeventswithineachcycle,powerlossisincurredwithinthediodeandthetransistorduringtheirrespectiveon-stateoperationduetoafiniteon-statevoltagedrop.Itiscommonpracticetotradeoffalargeron-statevoltagedroptoobtainasmallerswitchinglossinthebipolarpowerdevices.Consequently,theon-statepowerlosscannotbeneglectedespeciallyiftheoperatingfrequencyislow.Theleakagecurrentforthedevicesisusuallysufficientlysmall,sothatthepowerlossintheblockingmodecanbeneglected.

10.2PowerLossAnalysis

Thetotalpowerlossincurredinthepowertransistorcanbeobtainedbysummingfourcomponents:

PL,T(total)=PL,T(on)+PL,T(off)+PL,T(turn-on)+PL,T(turn-off).(10.1)

1030FUNDAMENTALSOFPOWERSEMICONDUCTORDEVICES

Thepowerlossincurredinthetransistorduringtheon-statedurationfromtimet3tot4isgivenby

PL,T(on)=t4−t3IMVON,T.T(10.2)

Thepowerlossincurredinthetransistorduringtheoff-statedurationbeyondtimet6untilthenextturn-oneventisgivenby

PL,T(off)=T−t6IL,TVDC.T(10.3)

Theleakagecurrent(IL,T)forthetransistorsisusuallyverysmallallowingthistermtobeneglectedduringthepowerdissipationanalysis.

Thepowerlossincurredinthetransistorduringtheturn-oneventfromtimet1tot3canbeobtainedbyanalysisofthesegmentsbetweenthetimeintervalst1tot2andt2tot3.Thepowerlossincurredduringthefirstsegmentisgivenby

PL,T−1(turn-on)=1t2−t1IPTVDC,2T(10.4)

wherethepeaktransistorcurrentisdependentonthepeakreverserecoverycurrentoftheP–i–Nrectifier:

IPT=IM+IPR.(10.5)

Inthepowerlossanalysis,itwillbeassumedthatthetimeduration(t2−t1)isdeterminedbythereverserecoverybehavioroftheP–i–Nrectifierandisindependentoftheoperatingfrequency.Thepowerlossincurredduringthesecondsegmentisgivenby

PL,T−2(turn-on)=1t3−t2⎛IPT+IM⎜2T⎝2⎞⎟VDC.⎠(10.6)

Inthepowerlossanalysis,itwillbeassumedthatthetimeduration(t3−t2)isalsodeterminedbythereverserecoverybehavioroftheP–i–Nrectifierandisindependentoftheoperatingfrequency.

Thepowerlossincurredinthetransistorduringtheturn-offeventfromtimet4tot6canbeobtainedbyanalysisofthesegmentsbetweenthetimeintervalst4tot5andt5tot6.Thepowerlossincurredduringthefirstsegmentisgivenby

PL,T−1(turn-off)=1t5−t4IMVDC.2T(10.7)

Thetimeinterval(t5−t4)isdeterminedbythetimetakenforthetransistorvoltagetorisetotheDCpowersupplyvoltage.Thistimedurationwasanalyzedforeach

Synopsis1031

transistorinthepreviouschapters.Thepowerlossincurredduringthesecondsegmentisgivenby

PL,T−2(turn-off)=1t6−t5IMVDC.2T(10.8)

Thetimeinterval(t6−t5)isdeterminedbythetimetakenforthetransistorcurrenttodecaytozero.Thistimedurationwasanalyzedforeachtransistorinthepreviouschapters.

Inasimilarmanner,thetotalpowerlossincurredinthepowerrectifiercanbeobtainedbysummingfourcomponents:

PL,R(total)=PL,R(on)+PL,R(off)+PL,R(turn-on)+PL,R(turn-off).(10.9)Thepowerlossincurredinthepowerrectifierduringtheon-statedurationfromtimet6totheendoftheperiodisgivenby

PL,R(on)=T−t6IMVON,R.T(10.10)

Inwritingthisexpression,itisassumedthatthecyclebeginsattimet1.Thepowerlossincurredinthepowerrectifierduringtheoff-statetimeduration(t4−t3)isgivenby

PL,R(off)=t4−t3IL,RVDC.T(10.11)

Theleakagecurrent(IL,R)forthepowerrectifierwillbeassumedtobeverysmall(evenforthesiliconSchottkyrectifier)allowingthistermtobeneglectedduringthepowerdissipationanalysis.

Thepowerlossincurredinthepowerrectifierduringtheturn-oneventfromtimet1tot3canbeobtainedbyanalysisofthesegmentsbetweenthetimeintervalst1tot2andt2tot3.Thepowerlossincurredduringthefirstsegmentismuchsmallerthanduringthesecondsegmentduetothesmallon-statevoltagedropforthepowerrectifiers.Thepowerlossincurredduringthesecondsegmentisgivenby

PL,R−2(turn-on)=1t3−t2IPRVDC.2T(10.12)

Thepowerlossincurredinthepowerrectifierduringtheturn-offeventfromtimet4tot6canbeobtainedbyanalysisofthesegmentsbetweenthetimeintervalst4tot5andt5tot6.Thepowerlossincurredduringthefirstsegmentisnegligibleduetothelowleakagecurrentforthepowerrectifier.Thepowerlossincurredduringthesecondsegmentisgivenby

1032FUNDAMENTALSOFPOWERSEMICONDUCTORDEVICES

PL,R−2(turn-off)=1t6−t5IMVON,D.(10.13)2T

Thispowerlossisalsosmallduetothelowon-statevoltagedropofpowerrectifiers.

10.3LowDCBusVoltageApplications

Inthissection,theabovepowerlossanalysisisappliedtoamotorcontrolapplicationusingalowDCbusvoltagewithadutycycleof50%.TheDCbusvoltage(VDC)willbeassumedtobe20Vaspertainstothebackplanepowersourceindesktopcomputers.Inthiscase,thedeviceblockingvoltageratingistypically30V.Thecurrentbeingdeliveredtothemotorwinding(IM)willbeassumedtobe10A.Duetothelowblockingvoltagerequiredforthisapplication,itis

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2