电气专业毕业设计外文翻译.docx

上传人:b****1 文档编号:2524773 上传时间:2023-05-03 格式:DOCX 页数:25 大小:222.76KB
下载 相关 举报
电气专业毕业设计外文翻译.docx_第1页
第1页 / 共25页
电气专业毕业设计外文翻译.docx_第2页
第2页 / 共25页
电气专业毕业设计外文翻译.docx_第3页
第3页 / 共25页
电气专业毕业设计外文翻译.docx_第4页
第4页 / 共25页
电气专业毕业设计外文翻译.docx_第5页
第5页 / 共25页
电气专业毕业设计外文翻译.docx_第6页
第6页 / 共25页
电气专业毕业设计外文翻译.docx_第7页
第7页 / 共25页
电气专业毕业设计外文翻译.docx_第8页
第8页 / 共25页
电气专业毕业设计外文翻译.docx_第9页
第9页 / 共25页
电气专业毕业设计外文翻译.docx_第10页
第10页 / 共25页
电气专业毕业设计外文翻译.docx_第11页
第11页 / 共25页
电气专业毕业设计外文翻译.docx_第12页
第12页 / 共25页
电气专业毕业设计外文翻译.docx_第13页
第13页 / 共25页
电气专业毕业设计外文翻译.docx_第14页
第14页 / 共25页
电气专业毕业设计外文翻译.docx_第15页
第15页 / 共25页
电气专业毕业设计外文翻译.docx_第16页
第16页 / 共25页
电气专业毕业设计外文翻译.docx_第17页
第17页 / 共25页
电气专业毕业设计外文翻译.docx_第18页
第18页 / 共25页
电气专业毕业设计外文翻译.docx_第19页
第19页 / 共25页
电气专业毕业设计外文翻译.docx_第20页
第20页 / 共25页
亲,该文档总共25页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

电气专业毕业设计外文翻译.docx

《电气专业毕业设计外文翻译.docx》由会员分享,可在线阅读,更多相关《电气专业毕业设计外文翻译.docx(25页珍藏版)》请在冰点文库上搜索。

电气专业毕业设计外文翻译.docx

电气专业毕业设计外文翻译

附录A

AfewexampleswillrefreshyourmemoryaboutthecontentofChapter8andthegeneralapproachtoanodal-analysissolution.

EXAMPLE17.12DeterminethevoltageacrosstheinductorforthenetworkofFig.

Solution:

Steps1and2areasndicatedinFig.17.22.

Step3:

NoteFig.17.23fortheapplicationofKirchhoff’scurrentlawtonodeV1:

Fig.17.22Fig.17.23

∑Ii=∑I00=I1+I2+I3V1-E/Z1+(V1/Z2)+(V1-V2)/Z3=0

Rearrangingterms:

V1[1/Z1+1/Z2+1/Z3]-V2[1/Z3]=E1/Z1(17.1)

NoteFig.17.24fortheapplicationofKirchhoff’scurrentlawtonodeV2:

0=I3+I4+I

V2-V1/Z3+V2/Z4+I=0

Rearrangingterms:

V2[1/Z3+1/Z4]-V1[1/Z3]=-I(17.2)

Fig.17.24

Groupingequations:

V1[1/Z1+1/Z2+1/Z3]-V2[1/Z3]=E1/Z1

V1[1/Z3]-V2[1/Z3+1/Z4]=I

1/Z1+1/Z2+1/Z3=1/0.5kΩ+1/10kΩ+1/2kΩ=2.5mS∠-2.29°

1/Z3+1/Z4=1/2kΩ+1/-5kΩ=0.539mS∠21.80°

andV1[2.5ms∠-2.29°]-V2[0.5mS∠0°]=24mΑ∠0°

V1[0.5mS∠0°]-V2[0.539mS∠21.80°]=4mΑ∠0°

with24mΑ∠0°-0.5mS∠0°

4mΑ∠0°-0.539mS∠21.80°

V1=2.5ms∠-2.29°-0.5mS∠0°

0.5mS∠0°-0.539mS∠21.80°

=(24mΑ∠0°)(-0.539mS∠21.80°)+(0.5mS∠0°)(4mΑ∠0°)/[(2.5ms∠

-2.29°)(-0.539mS∠21.80°)+(0.5mS∠0°)(0.5mS∠0°)]

=-10.01ν-j4.81ν/-1.021-j0.45=11.106ν∠-154.33°/1.116∠-156.21°

V1=9.95∠1.88°

MathCadThelengthandcomplexityoftheabovemathematicaldevelopmentstronglysuggesttheuseofanalternativeapproachsuchasMathCad.NoteinMathCad17.2thattheequationsareenteredinthesameformatasEqs.(17.1)and(17.2).BothV1andV2weregenerated,butbecauseonlyV1wasaskedfor,itwastheonlysolutionconvertedtothepolarform.Inthelowersolutionthecomplexitywassignificantlyreducedbysimplyrecognizingthatthecurrentisinmilliamperesandtheimpedancesinkilohms.Theresultwillthenbeinvolts.

K:

=10³m:

=0.01rad:

=1

V1:

=1+jV2:

=1+jdeg:

=π/180

Given

V1·[1/5·k+1/10j·k+1/2·k]-V2·1/2·k≈24·m

V1·[1/2·k]-V2[1/2·k+1/-5j·k]≈4·m

Find(V1,V2)=9.944+0.319jVolts

1.786-0.396jVolts

V1:

=9.944+0.319jV1=9.949arg(V1)=1.837·deg

RecognizingthatcurrentinmAresultsehenZisinkilohmns,analternativeformatfollows:

Given

V1·[1/5+1/10j+1/2]-V2·1/2≈24

V1·1/2-V2[1/2+1/-5j]≈4

Find(V1,V2)=9.944+0.319jVolts

1.786-0.396jVolts

V1:

=9.944+0.319jV1=9.949arg(V1)=1.837·deg

MATHCAD17.2

DependentCurrentSourcesFordependentcurrentsources,theprocedureismodifiedasfollows:

Steps1and2arethesameasthoseappliedforindependentsources.

Step3ismodifiedasfollows:

TreateachdependentcurrentsourcelikeanindependentsourcewhenKirchhoff’scurrentlawappliedtoeachdefinednode.However,oncetheequationsareestablished,substitutetheequationforthecontrollingquantitytoensurethattheunknownsarelimitedsolelytothechosennodalvoltages.

1.Step4isasbefore.

EXAMPLE17.13WritethenodalequationsforthenetworkofFig.17.25havingadependentcurrentsource.

Solution:

Steps1and2areasdefinedinFig.17.25.

Fig.17.25.

 

Step3:

AtnodeV1,I=I1+I2

V1/Z1+V1-V2/Z2-I=0

andV1[1/Z1+1/Z2]-V2[1/Z2]=I

AtnodeV2,I2+I3+ΚI=0

V2-V1/Z2+V2/Z3+Κ[V1-V2/Z2]=0

andV1[1-Κ/Z2]-V2[1-Κ/Z2+1/Z3]=0

resultingintwoequationsandtwounknowns.

IndependentVoltageSourcesbetweenAssignedNodesForindependentvoltagesourcesbetweenassignednodes,theprocedureismodifiedasfollows:

1.Steps1and2arethesameasthoseappliedforindependentsources.

2.Step3ismodefiedasfollows:

Treateachsourcebetwwendefinednodesasashortcircuit(recallthesupernodeclassificationofChapter8),andwritethenodalequationsforeachremainingindependentnode.Thenrelatethechosennodalvoltagestotheindependentvoltagesourcetoensurethattheunknownsoftheginalequationsarelimitedsolelytothenodalvoltages.

3.Step4isasbefore.

EXAMPLE17.14WritethenodalequationsforthenetworkofFig.17.26havinganindependentsourcebetweentwoassignednodes.

Solution:

Steps1and2definedinFig.17.26.

Step3:

ReplacingtheindependentsourceEwithashort-circuitequivalentresultsinasupernodethatwillgeneratethefollowingequationwhenKirchhoff’scurrentlawisappliedtonodeV1:

I1=V1/Z1+V2/Z2+I2

withV2-V1=E

Fig.17.26.

andwehavetwoequationsandtwounknowns.

DependentVoltageSourcebetweenDefinedNodesFordependentvoltagesourcesbetweendefinednodes,theprocedureismodifiedasfollows:

1.Steps1and2arethesameasthoseappliedforindependentvoltagesources.

2.Step3ismodifiedasfollows:

Theprocedureisessentiallythesameasthatappliedforindependentvoltagesources,exceptnowthedependentsourcesshavingtobedefinedintermsofthechosennodalvoltagetoensurethatthefinalequationshaveonlynodalvoltageastheirunknownquantities.

3.Step4isasbefore.

EXAMPLE17.15

WritethenodalequationsforthenetworkofFig.17.27havingadependentvoltagesourcebetweentwodefinednodes.

Solution:

Steps1and2aredefinedinFig.17.27.

Fig.17.27.

Step3:

ReplacingthedependentsourceμVxwithashort-circuitequivalentwillresultinthefollowingequationwhenKirchhoff'scurrentlawisappliedatnodeV1:

I=I1+I2

V1/Z1+(V1-V2)/Z2-I=0

andV2=μVx=μ[V1-V2]

orV2=μV1/1+μ

resultingintwoequationsandtwounknowns.NotethatbecausetheimpedanceZ3isinparallelwithavoltagesource,itdoesnotappearintheanalysis.Itwill,however,affectthecurrentthroughthedependentvoltagesource.

FormatApproach

AcloseexaminationofEqs.(17.1)and(17.2)inExample17.12willrevealthattheyarethesameequationsthatwouldhavebeenobtainedusingtheformatapproachintroduceinChapter8.Recallthattheapproachrequiredthatthevoltagesourcefirstbeconvertedtoacurrentsource,butthewritingoftheequationswasquitedirectandminimizedanychancesofanerrorduetolostsignormissingterm.

Thesequenceofstepsrequiredtoapplytheformatapproachisthefollowing:

1.Chooseareferencenodeandassignasubscriptedvoltagelabletothe(N-1)remainingindependentnodesofthenetwork.

2.Thenumberofequationsrequiredforacompletesolutionisequaltothenumberofsubcriptedvoltages(N-1).Column1ofeachequationisformedbysummingtheadmittancestiedtothenodeofinterestandmultiplyingtheresultbythatsubscriptednodalvoltage.

3.Themutualtermsarealwayssubtractedfromthetermsofthefirstcolumn.Itispossibletohavemorethanonemutualtermifthenodalvoltageofinteresthasanelementincommonwithmorethanoneothernodalvoltage.Eachmutualtermisproductofthemutualadmittanceandtheothernodalvoltagetiedtothatadmittance.

4.Thecolumntotherightoftheequalitysignisthealgebraicsumofthecurrentsourcestiedtothenodeofinterest.Acurrentsourceisassignedapositivesignifitsuppliescurrenttoanode,andanegativesignifitdrawscurrentfromthenode.

Solveresultingsimultaneousequationsforthedesirednodalvoltages.Thecommentsofferedformeshanalysisregardingindependentanddependentsourcesapplyherealso.

EXAMPLE17.16

Usingtheformatapproachtonodalanalysis,findthevoltageacrossthe4-ΩresistorinFig.17.28.

Fig.17.28.

Solution:

Choosingnodes(Fig.17.29)andwritingthenodalequations,wehave

Z1=R=4ΩZ2=jXl=j5ΩZ3=-jXc=-j2Ω

Fig.17.29

V1(Y1+Y2)-V2(Y2)=-I1

V2(Y3+Y2)-V1(Y2)=+I2

orV1(Y1+Y2)-V2(Y2)=-I1

-V1(Y2)+V2(Y3+Y2)=+I2

Y1=1/Z1Y2=1/Z2Y3=1/Z3

Usingdeterminantsyields

-I1-Y2

+I2Y2+Y3

V1==-(Y3+Y2)I1+I2Y2/(Y1+Y2)(Y3+Y2)-Y2Y2

Y1+Y2-Y2

-Y2Y3+Y2

=-(Y3+Y2)I1+I2Y2/Y1Y3+Y2Y3+Y1Y2

Substitutingnumericalvalues,wehave

V1=-[(1/-j2Ω)+(1/j5Ω)]6Α∠0°+4Α∠0°(1/j5Ω)/(1/4Ω)(1/-j2Ω)+(1/j5Ω)(1/-j2Ω)+(1/4Ω)(1/j5Ω)

=-(+j0.5-j0.2)6∠0°+4∠0°(-j0.2)/(1/j8)+(1/10)+(1/j20)

=(-0.3∠90°)(6∠0°)+4∠0°(-j0.2)/j0.125+0.1-j0.05

=-1.8∠90°+0.8∠-90°/0.1+j0.075=2.6ν∠-90°/0.125∠36.87°

V1=20.80ν∠-126.87°

MathCadUsingMathCadandthematrixformatwiththeadmittanceparameterswillquicklyprovideasolutionforV1inExample17.16,asshowninMathCad17.3.

Z1:

=4Z2:

=5jZ3:

=-2jrad:

=1deg:

=π/180

Y:

=[1/Z1+1/Z2]-1/Z2I:

=-6-1/Z2[1/Z2+1/Z3]4

I/Y=-12.48-16.64jVolts

8.32-2.24jVolts

V1:

=-12.48-16.64jV1=20.8arg(V1)=-126.87·deg

V2:

=8.32-2.24jV2=8.616arg(V2)=-15.068·deg

MATHCAD17.3

EXAMPLE17.17Usingtheformatapproach,writethenodalequationsforthenetworkofFig.17.30.

Fig.17.30.

Solution:

ThecircuitisredrawninFig.17.31,where

Z1=R1+jXl1=7Ω+j8ΩE1=20ν∠0°Z3=-jXc=-j10Ω

Z2=R2+jXl2=4Ω+j5ΩI1=10Α∠20°Z4=R3=8Ω

Convertingthevoltagesourcetoacurrentsourceandchoosingnodes,weobtainFig.17.32.Notethe“neat”appearanceofthenetworkusingthesubscriptedimpedances.WorkingdirectlywithFig.17.30wouldbemoredifficultandcouldproduceerrors.

Writethenodalequations:

V1(Y1+Y2+Y3)-V2(Y3)=+I2

V2(Y3+Y4)-V1(Y3)=+I1

Y1=1/Z1Y2=1/Z2Y3=1/Z3Y4=1/Z4

whicharerewrittenasV1(Y1+Y2+Y3)-V2(Y3)=+I2

-V1(Y3)+V2(Y3+Y4)=+I1

EXAMPLE17.18WritethenodalequationsforthenetworkofFig.17.33.Donotsolve.

Solution:

Choosenodes(Fig.17.34):

Z1=R1Z2=jXl1Z3=R2-jXc2

Z4=-jXc1Z5=R3Z6=jXl2

andwritethenodalequations:

V1(Y1+Y2)-V2(Y2)=+I1

V2(Y2+Y3+Y4)-V1(Y2)-V3(Y4)=-I2

V3(Y4+Y5+Y6)-V2(Y4)=+I2

whicharerewrittenasV1(Y1+Y2)-V2(Y2)+0=+I1

-V1(Y2)+V2(Y2+Y3+Y4)-V3(Y4)=-I2

0-V2(Y4)+V3(Y4+Y5+Y6)=+I2

Y1=1/R1Y2=1/jXl1Y3=1/R2-jXc2Y4=-1/jXc1Y5=1/R3Y6=1/jXl2

 

Fig.17.31

Notethesymmetryaboutthediagonalforthisexampleandthoseprecedingitinthissection.

EXAMPLE17.19ApplynodalanalysistothenetworkofFig.17.35.DeterminethevoltageVl.

Solution:

Inthiscasethereisnoneedforasourceconversion.ThenetworkisredrawninFig.17.36withthechosennodalvoltageandsubscriptedimpedances.

Applytheformatapproach:

Y1=1/Z1=1/4kΩ=0.25mS∠0°=G1∠0°

Y2=1/Z2=1/1kΩ=1mS∠0°=G1∠0°

Y3=1/Z3=1/2kΩ∠90°=0.5mS∠-90°=-j0.5mS=-jBl

V1:

(Y1+Y2+Y3)V

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2