毕业设计外文翻译.docx

上传人:b****2 文档编号:3063351 上传时间:2023-05-05 格式:DOCX 页数:19 大小:456.88KB
下载 相关 举报
毕业设计外文翻译.docx_第1页
第1页 / 共19页
毕业设计外文翻译.docx_第2页
第2页 / 共19页
毕业设计外文翻译.docx_第3页
第3页 / 共19页
毕业设计外文翻译.docx_第4页
第4页 / 共19页
毕业设计外文翻译.docx_第5页
第5页 / 共19页
毕业设计外文翻译.docx_第6页
第6页 / 共19页
毕业设计外文翻译.docx_第7页
第7页 / 共19页
毕业设计外文翻译.docx_第8页
第8页 / 共19页
毕业设计外文翻译.docx_第9页
第9页 / 共19页
毕业设计外文翻译.docx_第10页
第10页 / 共19页
毕业设计外文翻译.docx_第11页
第11页 / 共19页
毕业设计外文翻译.docx_第12页
第12页 / 共19页
毕业设计外文翻译.docx_第13页
第13页 / 共19页
毕业设计外文翻译.docx_第14页
第14页 / 共19页
毕业设计外文翻译.docx_第15页
第15页 / 共19页
毕业设计外文翻译.docx_第16页
第16页 / 共19页
毕业设计外文翻译.docx_第17页
第17页 / 共19页
毕业设计外文翻译.docx_第18页
第18页 / 共19页
毕业设计外文翻译.docx_第19页
第19页 / 共19页
亲,该文档总共19页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

毕业设计外文翻译.docx

《毕业设计外文翻译.docx》由会员分享,可在线阅读,更多相关《毕业设计外文翻译.docx(19页珍藏版)》请在冰点文库上搜索。

毕业设计外文翻译.docx

毕业设计外文翻译

 

 

DYNAMICBEHAVIOROFPORTALPARTOFTRAFFICTUNNELINHIGH-INTENSITYEARTHQUAKEAREA

交通隧道在高烈度地震区洞口动态行为的探究

外文翻译

 

专业名称:

土木工程

年级班级:

道桥08-4班

学生姓名:

张银

指导教师:

徐平

 

河南理工大学土木工程学院

二○一二年六月十一日

DYNAMICBEHAVIOROFPORTALPARTOFTRAFFICTUNNELINHIGH-INTENSITYEARTHQUAKEAREA

SHENYusheng1,2,GAOBo2,WANGZhengzheng2,WANGYingxue2

1PostdoctoralStationofMechanics,SouthwestJiaotongUniversity,Chengdu610031,

China;email:

***************.

2SchoolofCivilEngineering,SouthwestJiaotongUniversity,Chengdu610031,China;

Abstract:

Alarge-scaleshakingtabletestisaccomplishedonthedynamicresponseandfailuremodesofthetunnel.Theresultisthatthelargestdynamicresponseoftunnelstructureappearsattheside-wallandtheshearorfracturingdamageappearsattheinvert,whichisbasicallythesamedamagestatewithtunnelengineeringin5.12WenChuanearthquake.Theinternalforcevalueoftunnelstructureminishandthenumbersofcracksreduceaftertheshockabsorptionlayerissetupinmodeltest,andoptimizethestressstateoftunnel.Thesurfacecracksoftunnelmodelappearfirstlyatbothspandrelsanddevelopdiagonallyatthetunnelentrance.Thecracksarise"X"-shapedistributiononthesurfaceofthemodelsoil.Therearealotofcircumferentialcracksattunnelportalundertheconditionofdynamicloads,andmostoflongitudinalcracksorobliquecrackscanterminatewhenextendingtothecircumferentialcracks.Sothatitisproposedthatthereshouldbedesignedmoreshockabsorptionseamsinthevicinityoftunnelportalinordertobepropitioustodampingtheearthquakeenergy.

Keywords:

dynamicbehavior,shakingtabletest,high-intensityearthquakearea

1Introduction

Itisregrettablethatthepeople'slivesandpropertyhavesufferedgreatlossesduring"5•12"WenchuanearthquakeinSichuanprovince.Atthesametimetheciviltransportengineeringaredamagedtosomeextent,includingthetunnelengineering.Tunneldamagesurveyshowsthatthetunnelportalsectionisthemosteasilytodestroyandisthemostweakparts(Li,2006).Especiallyatthehigh-intensityearthquakearea,thestabilityanalysisofthetunnelentrance,portalandsideslopewillbefocusedoninthefieldoftheanti-seismictechnologyresearch.Themechanicalcharacteristicoftunnelliningisaconsiderablycomplexprocess,thegradeofsurroundingrockisvariousandthereareavarietyofnon-linearfeatures(Luo,2008).Itisaeffectivewaytoresearchthetunnelanti-seismiccharacteristicbytheshakingtabletestintheearthquakeengineeringfieldbecausetheestablishmentofnon-linearequationsofmotionandthenumericalsolutionisstillnotperfect(Chen,2006;Gong,2002;Yang,2003;Zhou,2005).

Itisinevitabletoencounteranyproblemsthatthetunnelprojectscouldbepossibletoadoptedinthevicinityofthefaultorhigh-intensityearthquakeareaduringtheconstructionofthetrafficengineeringinWesternChinaregions(inparticulartheSouth-West).ThelinefromYa’antoLuguhighwayisacrosstheseismicfaultsseveraltimes(XianshuiRiverfaultzoneandAnningRiverfaultzone)andtheseismicfortificationintensityisfromⅦdegreestoⅨdegrees,inparticularlyⅩdegreesatlocalregions.Thepeakaccelerationofgroundmotionisfrom0.15g~0.4g,whichparametersaretherelativelargeinthecurrentconstructionofthehighway.

Inthispaper,thedynamiccharacteristicsoftunnelstructureisanalyzedatthemountaintunnelportalaccordingtotheactualengineering,thusthelawofstress-strainandfailuremodeofthetunnelandsurroundingrockareresearchedunderthegroundmotionload,whichprovidesanimportantreferenceforthedesignandconstructionofthehighwaytunnelinhigh-intensityearthquakearea.

2Relyingonengineeringconditionsandshakingtabletestdevice

2.1Geologicalconditions

Modeltestwasaccomplishedinaugust2007,basedoncertaintunnelprojectwherethereisthroughtheregionofseismicfortificationintensityⅨdegreesandmaybeactivefaultsinYa-Luhighway.Basedondrillingandsurfacesurvey,thetunnelstratumismostlytriassicsystem~Jurassicsystem,siltymudstone,peliticsiltstone,quartzsandstone,carbargillite,CenozoicoverlyingHoloceneQuaternarycover.

2.2Shakingtabletest

TheshakingtableattheTractionPowerStateKeyLaboratoryisthemainfacilityforexperimentalresearchintoearthquakeengineeringatSouthwestJiaotongUniversity.Themodeltestadoptsthebi-directionalseismicshaketable,whichtablesizeis2.5mby2.5m,theplatformcapableofcarryingamaximumpayloadof30tandthevibrationmodeisforX,Ytwodirectionandfourfreedomdegrees.Thefrequencyrangeis0.1~30Hz,andthepeakaccelerationofXorYdirectionis1.0grespectively.Itisdrivenhorizontallyandverticallybyfour20kNservoactuatorsgivingfullcontrolofmotionoftheplatformin4DOFsimultaneously.

3Designofmodeltestsimilarparameters

Takingintoaccountthemodelbordereffect,thewidthoftheboxmodelshouldbemorethan6timesthetunnelwidth,thusthesimilarparametersaredetermined(geometrysimilarCL=30,Young’smodulusCE=45,densityCρ=1.5)andShen(2008)describedtherestofphysicalsimilarparameters.

3.1Designofsimilarmaterialforsurroundingrockandsecondarylining

Accordingtothesimilarrelationandthephysico-mechanicalparametersofsurroundingrockinsitu,thesimilarmaterialselectedisconsistedofflyash,riversandandoilaftertheorthogonaltestsarerepeateddozensoftimes.Atlastthesesimilarmaterialwillbemixedaccordingtoacertainsimilarratio.

Thesecondaryliningmaterialselectedisconsistedofplaster,quartzsand,barite,waterbyacertainpercentageofpreparation,whichmechanicalparametersareshowninTable.1.

Table.1Mechanicalparametersofconcretesimilarmaterial

parameters

Designvalue

Theoryvalue

Testvalue

Similituderelation

γ(kN/m3)

25

16.7

17.0

reasonable

E(MPa)

29.5

0.66

0.72

reasonable

σc(MPa)

12.5

0.3

0.426

approximately

4Testmeasurementandscheme

4.1Strainmeasurementoftunnelstructure

Straingaugesarefirstlyarrangedforthetunnelsitewheretheinternalforceanddeformationoftunnelismaximal.Thesensorwireshouldbefirmlyfixedatthesurfaceofthemodelstructureandfetchedoutfromthecertainpositionwherethemodeldisplacementislesseratthatdirection.TheschematicdiagramofmeasurementpointsarelaidinFigure.1inordertoverifythedynamicresponselawoftunnelstructure.

Figure.1LayoutschemeofsensorsFigure.2Accelerationstime-historiescurve

4.2Testload---earthquakewave

TheearthquakewavesadoptedistheartificialwavethatissynthesizedbytheSichuanSeismologicalBureauundertheconditionsofthesiteresponsespectrumsynthesisinmodeltest.Theexceedanceprobabilityofearthquakewavesis2%,theoriginalpeakaccelerationis0.67g,theholdtimeisabout20sinthepartofstrongshock,mostoftheearthquakewavesEnergyislessthan15sandiswithin15Hzinthefrequency(inFigure.2).

4.3Testscheme

InTable.2,thecase2and3aretostudytheeffectoftheshockabsorptionlayer.Thepolyethylenematerialthatisadoptedtotheshockabsorptionlayercircumfusestheoutsidesurfaceofthetunnellining(theinvertisnotlaid).

Table.2Testconditionsofmountaintunnelmodel

number

case

remark

1

single-tunnelportal

validatingtheanti-seismiccharacteristicofsingle-tunnel

2

bi-tunnelportal

bi-tunnelhavenotshockabsorptionmeasure

3

bi-tunnelportal

single-tunnelhasshockabsorptionmeasure

5Modeltestresultsandanalysis

5.1Strainresponseanalysisoftunnelstructure

Therearemorethan30straingaugesatthekeypositions,thusthestrainresponselawofthetunnelliningisobtainedbythestraingauges.

InFigure.3,whentheacceleration0.4g(equivalenttodegrees)isinputfromshakingtable,themaximumstrainamplitudevalueofthevaultis22μεinthecase2,whilethecase3isfor6.5με,thusthestrainamplitudevalueisobviouslydecreasedaftertheshockabsorptionmeasureistaken.Themaximumstrainamplitudevalueoftheinvertdonotchangebecausetheshockabsorptionlayerisnotsetattherighttunnelinvert.Soitisobviousforthedampingeffectthattheshockabsorptionmeasuresaretakenfortunnelstructureatthetunnelportal.

a)Straincurveofvaultincase2.b)Straincurveofinvertincase2.

c)Straincurveofvaultincase3.d)Straincurveofinvertincase3.

Figure.3Time-historiesofstrainatdifferentpointsofright-tunnel(a=0.4g)

Thestructuralstrainvaluesrecordedfromvariousmeasuringpointsdonottendtobezeroafterthevibrationisover,whichphenomenonismainlyduetotherockandsoilproducingpermanentdeformationaroundthetunnelstructureundertheconditionofthedynamicloading,sothattheadditionalseismicstrainsoccurontunnelstructure

5.2Patternsofdamageofmodeltestcomparativeanalysis

Therearevariouscracksonthesurfaceofthesimilitudematerialinbothcases,butthosecracksoftunnelmodelappearfirstlyonbothspandrelsandthendevelopdiagonally.InFigure.4a,thecracksarise"X"-shapedistributiononthesurfaceofthemodelsoilandthemodelsoilcracksofrighttunnelaremorethanlefttunnelatthesurfaceoftunnel.Thereisa45°anglebetweenthedirectionofcracksandthetunnellongitudinaldirection,thenumbersofcracksinrighttunnelclosetothesideofborderarelessthantheothersideandthereappearalotofrun-throughcracksonthesurfaceofthemodelsoilduetosmalldistanceofbothtunnels.

a)case2(noshockabsorptio

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2