汽车电控技术二.docx

上传人:b****3 文档编号:3790308 上传时间:2023-05-06 格式:DOCX 页数:29 大小:99.95KB
下载 相关 举报
汽车电控技术二.docx_第1页
第1页 / 共29页
汽车电控技术二.docx_第2页
第2页 / 共29页
汽车电控技术二.docx_第3页
第3页 / 共29页
汽车电控技术二.docx_第4页
第4页 / 共29页
汽车电控技术二.docx_第5页
第5页 / 共29页
汽车电控技术二.docx_第6页
第6页 / 共29页
汽车电控技术二.docx_第7页
第7页 / 共29页
汽车电控技术二.docx_第8页
第8页 / 共29页
汽车电控技术二.docx_第9页
第9页 / 共29页
汽车电控技术二.docx_第10页
第10页 / 共29页
汽车电控技术二.docx_第11页
第11页 / 共29页
汽车电控技术二.docx_第12页
第12页 / 共29页
汽车电控技术二.docx_第13页
第13页 / 共29页
汽车电控技术二.docx_第14页
第14页 / 共29页
汽车电控技术二.docx_第15页
第15页 / 共29页
汽车电控技术二.docx_第16页
第16页 / 共29页
汽车电控技术二.docx_第17页
第17页 / 共29页
汽车电控技术二.docx_第18页
第18页 / 共29页
汽车电控技术二.docx_第19页
第19页 / 共29页
汽车电控技术二.docx_第20页
第20页 / 共29页
亲,该文档总共29页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

汽车电控技术二.docx

《汽车电控技术二.docx》由会员分享,可在线阅读,更多相关《汽车电控技术二.docx(29页珍藏版)》请在冰点文库上搜索。

汽车电控技术二.docx

汽车电控技术二

第四章汽车自动变速器

第1节概述

车用变速器分为手动变速器(MT)、自动变速器(AT)和无极变速器(CVT),变速器的控制效果直接影响整车动力性、经济性、舒适性和通过性,车用变速器的作用:

1、降速增扭、2、中断动力、3实现倒车。

一、手动变速器(MT)的缺点

1、换挡操作劳动强度大,容易引起驾驶员的疲劳和紧张。

2、换挡时存在冲击力,影响传动系零件使用寿命,降低乘坐舒适性。

3、车辆启动时可能会出现发动机熄火、溜车事故。

4、换挡最佳时间不易控制,影响汽车行驶的动力性和经济性。

针对手动变速器上述问题,汽车厂家开发出自动变速器,它能够实现车辆起步平稳、换挡合理、乘坐舒适、节能环保等功能,提高了整车性能,加速了轿车进入家庭的进程。

二、自动变速器的发展过程

半自动变速器:

(1)自动离合器加手动变速器的组合形式;

(2)液力变矩器+换挡离合器+辅助手动变速器。

这些产品是自动变速器发展过程中的一个过渡产品,该产品只能解决汽车起步时发动机熄火和溜车以及换挡冲击问题,换挡时间和过程还是由驾驶员完成,不能实现最佳换挡规律,目前这类产品已退出市场。

1939年美国通用汽车公司GM首先在其产品上使用由液力偶合器与行星齿轮机构组成的液力变速器,在一定范围内实现了自动变速功能。

20世纪40—50年代出现以车速和油门开度为换挡条件的液力控制换挡的自动变速器,使其应用更加广泛。

20世纪70年代,电控技术开始用于自动变速器,丰田公司研制出第一台电控自动变速器。

1976年开始批量生产。

20世纪80年代,出现以微机为控制核心的电控自动变速器。

三、自动变速器分类

1、按变矩方式分类:

(1)液力传动式自动变速器(AT):

由液力变矩器和行星齿轮机构组成。

液力变矩器实现启车平稳和增加扭矩功能,行星齿轮机构实现转矩范围的进一步扩大和倒车功能,该变速器是目前应用最广泛的一种自动变速器。

但电控制系统需要对液力变矩器的工作模式和行星齿轮机构工作状态进行控制,以实现变速功能。

(2)金属带式自动变速器(CVT):

利用金属带与带轮侧壁之间的摩擦来传递转矩,通过调节主、从动带轮的有效半径来改变传动比。

主动轮和从动轮均由两个半轮组成,一个半轮沿轴向固定,另一个半轮通过液压机构可以沿轴向移动,从而实现主动轮和从动轮有效半径的改变。

根据车速和节气门开度控制液压机构来改变传动带轮有效半径,实现无级变速。

同时液压机构调节两个带轮中可移动半轮的轴向位置变化,以保证金属带保持一定的张紧力,防止带轮滑转。

(3)电传动式自动变速器:

该变速器是通过电机调速来实现变速功能,即控制电机的输入电压或交流电频率来调节电机的转速和转矩,实现无级变速。

2、按换挡的控制方式分类:

(1)液控式液力传动自动变速器。

用机械方式将车速和节气门开度信号转化为液压控制信号,各控制阀按照给定的换挡规律控制换挡执行机构实现自动换挡。

(2)电控式液力传动自动变速器。

用各种传感器将发动机转速、节气门开度、车速、发动机温度、变速器的油温等参数转换为电信号。

自动变速器ECU根据上述信号确定换挡控制信号,控制换挡电磁阀工作,使液压机构实现预期的动作,改变液力变矩器和行星齿轮机构的工作状态,实现自动换挡。

3、按汽车驱动方式分类:

前驱自动变速器和后驱自动变速器,前驱自动变速器的壳体内装有差速器,由于前驱动汽车的发动机横直较多,其变速器将输入轴和输出轴设置为两个轴线方式,轿车多采用此方式。

4、自动变速器(AT)基本组成及特点

1、基本组成:

液力变矩器、行星齿轮机构、控制系统

(1)液力传动装置:

它通过液力变矩器将发动机输出的功率输送给行星齿轮机构,由于力矩传输是利用液压油来实现,因此,它可以避免启车时发动机熄火、溜车及换挡冲击现象发生。

行星齿轮机构可实现倒车、进一步减速增扭,增加汽车的工况适应范围。

(2)自动控制系统由电控和液压系统两部分组成:

通过传感器将机械参数转换为电信号,根据一定的控制算法确定输出指令,再通过各种电磁阀将控制电压信号转换为相应的控制油压,以液压为动力控制换挡执行机构,从而实现换挡控制,提高汽车的动力性和经济性。

(3)行星齿轮机构是一个三元件机构,只要保证一个元件为动力输入、一个元件固定,第三元件就可以作为动力输出,并得到一个固定的传动比。

2、自动变速器特点:

(1)操作简单,行车安全;

(2)发动机及传动系使用寿命长;

(3)汽车的动力性好;

(4)汽车的通过性能强;

(6)自动变速器油耗相对较高。

(7)机构及维修复杂,成本高。

五、电控自动变速器控制系统设计:

1、根据整车动力性指标确定传动系布置形式、速比和转矩范围。

2、制定自动变速器的控制逻辑。

如起步、升降挡、制动、倒车、爬坡等。

3、确定控制算法和参数的测量方案。

实现最佳换挡策略。

4、系统建模仿真、控制策略优化。

5、控制器的硬件电路设计。

6、控制系统软件编程及调试。

7、系统台架调试。

8、系统整车道路试验(可靠性、抗电磁干扰性、故障诊断)。

`

六、挡位设置

P:

驻车挡,液压系统驻车挡油路接通,控制行星齿轮机构将变速器输出轴锁止,驱动轮不能转动。

R:

倒车档,液压系统倒挡油路接通,控制行星齿轮机构,实现倒车。

N:

空挡,行星齿轮机构空转,不输出动力。

D:

前进挡,控制系统接通相应的前进挡油路,行星齿轮系统在执行机构控

制下得到相应的传动比。

2位:

高速发动机制动档,液压系统只能在前进挡中的1、2挡自动切换,不能升入高速挡,从而使发动机获得较大的制动效果。

L(1位):

低速发动机制动档,汽车被锁定在前进挡中的1挡,发动机制动效果更强,适合于山区行驶。

只有在P或N挡时才能启动发动机。

第二节自动变速器结构与工作原理

自动变速器由液力变矩器、行星齿轮机构、液压系统和电控系统组成。

一、液力变矩器:

安装在发动机与行星齿轮变速器之间,以液压油为工作介质,进行扭矩传递、变矩、变速和分离作用。

1、组成:

泵轮(主动轮)、涡轮(从动轮)、导轮。

泵轮是动力输入元件,位于液力变矩器后端,与变矩器壳体刚性连接,变速器壳体随发动机飞轮一起转动。

涡轮是动力输出元件,通过花键与行星齿轮机构的输入轴相连,它位于泵轮前方,其叶片面向泵轮叶片。

导轮位于涡轮与泵轮之间,是液力变矩器的反应元件,导轮通过单向离合器固定在导轮轴上。

泵轮、涡轮和导轮装配好后会形成断面为循环圆的环状体,环形内腔中充满液压油。

2、工作原理:

发动机工作时其飞轮带动液力变矩器壳体转动,由于泵轮与变速器壳体刚性连接,所以此时泵轮开始旋转,泵轮叶片间的液压油在离心力作用下,从泵轮叶片内缘流向外缘,当泵轮转速大于涡轮转速时,泵轮叶片外缘的油压大于涡轮外缘的油压,结果使涡轮随泵轮一起转动。

若此时涡轮停止或与泵轮转速差很大,则由泵轮传给涡轮的动能较小,大部分液压油通过导轮(此时固定)叶片又流回泵轮。

当泵轮的液压油再次冲击涡轮叶片时,泵轮输出的动能由发动机和导轮返回的两部分动能组成,使泵轮传递给涡轮的扭矩增大,车辆开始起步,此时有部分液压油的动能转化为由温的升高。

3、工作特性

(1)增扭特性:

当泵轮与涡轮转速差较大时,从涡轮流回到泵轮的液压油会使泵轮减速,但由于泵、涡轮之间存在导轮(固定),涡轮流回的液压油首先冲击导轮,经导轮改变液压油的流向后,再次冲击泵轮加速。

结果使泵轮将从发动机和涡轮回流的能量一起传递给涡轮,涡轮输出转矩增大,实现增加扭矩功能。

(2)耦合特性:

随着涡轮转速的提高,液压油流动方向会发生改变,在导轮上产生涡流,损耗能量。

因此,在泵与涡轮转速差较小时,放松导轮,使导轮能自由旋转,避免产生涡流,消耗能量。

当泵、涡轮转速差小于10%时,单向离合器导通,导轮可自由旋转(空转),液力变矩器进入耦合工作区,提高了传递效率。

(3)失速特性:

当涡轮因负载过大而停止转动,但泵轮仍在旋转。

此时液力变矩器只有能量输入,而无能量输出。

发动机输出的动能转变成热能,液力变矩器油温将急剧升高,时间过长会损坏变速器。

该特性可以反映液力变矩器的过载能力。

(4)锁止特性:

当泵轮和涡轮转速接近时,锁止离合器将液力变矩器的泵和涡轮刚性连为一体,液力变矩器传递效率为1。

锁止离合器的从动盘安装在涡轮轮毂花键上,主动部分压盘与泵轮固定,当离合器接合时,泵轮与涡轮刚性连成一体,液力变矩器不工作,进入锁止状态。

二、行星齿轮机构

液力变矩器可在一定范围内实现无级变速,但调速范围较小,不能满足汽车工况要求,因此,液力变矩器必须与行星齿轮机构(机械变速器)组合使用,扩大传动比范围。

1、组成:

太阳轮、齿圈、装有行星轮的行星架。

2、工作原理:

行星齿轮机构中,任意元件为动力输入,第二元件固定,则第三元件为动力输出,可以实现不同的传动比。

设太阳轮齿数为S,齿圈齿数为R,由于行星齿轮是内外啮合,固定行星齿轮的行星架的齿数必须大于齿圈齿数R,设为S+R,而齿圈齿数R必大于太阳论齿数S。

(1)太阳轮输入,行星架输出,齿圈固定,S+R/S,速比大于1。

(2)行星架输入,太阳轮输出,齿圈固定,S/S+R,速比小于1。

(3)齿圈输入,行星架输出,太阳轮固定,S+R/R,速比大于1。

(4)行星架输入,齿圈输出,太阳轮固定,R/S+R,超速档。

(5)太阳轮输入,齿圈输出,行星架固定,R/S,倒档。

速比大于1。

(6)齿圈输入,太阳轮输出,行星架固定,S/R,速比小于1。

(7)两元件连在一起为输入,第3元件为输出,传动比为1。

直接挡。

(8)所有元件不固定,则变速器空挡。

3、优点

(1)所有行星轮均参与工作,承载大,工作时噪声小。

(2)由于工作时变速壳体不受力,可以减轻壳体重量。

(3)齿轮处于常啮合状态,换挡简单,无换挡冲击,工作平稳。

三、执行机构

1、多片离合器用于将涡轮输出轴与行星齿轮机构三元件之一的连接和固定。

要求:

(1)分离时有足够的间隙。

(2)油压消失后,油腔内不能有油,保证彻底分离。

(3)离合器工作平稳、安静。

2、制动器用于执行机构各元件的固定(齿圈),它由制动带和液压伺服系统组成,制动带是内表面带有镀层的开口式环形钢带,钢带开口的一端支承在与变速器壳体固定连接的支座上,另一端与伺服装置相连,制动结束后钢带与制动鼓之间要有间隙,防止钢带过渡磨损。

3、单向离合器又称单向自由轮,它可以根据行星齿轮某一元件相对旋转方向控制其只能沿一个方向旋转(太阳轮),而另一个方向锁止。

特点,锁止方向取决于相连元件的相对运动,无需专门的油压控制。

四、电控系统

1、传感器

(1)车速传感器。

通常有2个车速传感器,一个安装在变速器输出轴上,用于控制换挡点车速和离合器工作状态。

另一个安装在里程表里,作为备用。

传感器种类有3种:

舌簧开关、光电耦合和磁阻元件式。

光电耦合型车速传感器安装在里程表内,轮轴转一周,光线被阻断20次,产生20个脉冲。

磁阻元件式车速传感器安装在变速器输出轴处,原理与曲轴转速传感器相同。

(2)模式选择开关:

经济模式和动力模式。

(3)空挡起动开关。

只有在N、P挡,汽车才能起动。

2、控制器(ECU):

自动变速器可以与发动机共用一个ECU。

(1)控制换挡规律:

目前有单参数和双参数换挡(既以车速或负荷换挡)控制规律。

动力性最佳换挡规律:

在相邻两挡同一节气门开度下,牵引力曲线交点处的发动机转速为换挡时刻。

经济性最佳换挡规律:

在相邻两挡不同节气门开度下,油耗曲线相交点的发动机转速为换挡时刻。

(2)控制超速行驶:

只有在D挡且超速开关打开时,汽车才能进入超速挡行驶。

(3)控制锁止离合器:

当液力变矩器泵轮与涡轮轮速差较小时,为提高机械效率,应使锁止离合器接合,使泵轮与涡轮刚性连接。

ECU在下列情况强行解除锁止。

汽车制动时或节气门全闭时。

在升降挡过程中。

发动机温度低于60℃时。

(4)控制换挡品质。

ECU通过控制发动机转矩保证换挡平顺,也可以调节行星齿轮机构液压控制元件的工作压力,使元件接合更加柔和。

评价用纵向加速度的变化率指标(冲击度)。

(5)自诊断与失效防护功能。

当系统有故障时,ECU储存故障信息,可以事后读故障码,排除故障,有些车型在变速器电控系统故障时,配合手动换挡机构可使车辆连续行驶,不能升降挡。

(6)换挡延迟:

当车速从V1到达V2时,从1挡换成2挡,而当车速从V2降至V1时,才由2挡降至1挡。

优点是变速器换入新挡位后,不会因节气门或车速微小变化而重新回到原挡位,可以减少换挡循环,延长变速器使用寿命。

(6)硬件电路设计

a.数字量:

车速输入电路。

车速传感器输出为一定频率时脉冲信号。

一般

采用定时/计数接口输入比信号。

车速

b.模拟量:

节气门开度、温度、压力、位移等信号。

被测量

 

c.开关量:

选挡开关。

制动开关等。

开关量

 

d.输出通道:

由于电磁阀和步进电机均为负载为感性负载,所以输出电路应包括光电耦合,功率放大。

(7)软件设计

a.换挡规律存储。

它是根据驾驶员需求、车辆当前状态和挡位信息,以查表方式获得当前的换挡控制规律。

b.主控程序流程:

五、电控自动变速器的检查:

1、一般性检查

(1)发动机怠速检查,如果发动机怠速过高,出现换挡冲击,则自动变速器工作不正常。

检查怠速时,自动变速器应放在停车或空挡位置,发动机怠速为750rpm。

(2)自动变速器液压品质和油面高度检查,油面应在规定的高度。

2、道路试验

(1)升挡检查。

节气门1/2开度起步加速,发动机转速会瞬时下降,并有纵向冲击。

(2)升挡车速检查。

4挡自动变速器,在节气门1/2开度时,1挡升为2挡的车速为25-35km/h,2

3挡,55-70km/h,3

4挡,90-120km/h。

六、行星齿轮机构应用实例:

1、拉维娜行星齿轮系统。

两排行星齿轮机构共用一个齿圈和行星架,行星架上的2套行星齿轮相互啮合,其中短行星轮与小太阳轮啮合,长行星轮与大太阳轮啮合,同时也与齿圈啮合。

齿圈为动力输出轴,大小太阳轮为动力输入轴,行星架可以固定或单向转动、大太阳轮可以固定,也可以与小太阳轮成为一体,该机构共有五个执行元件。

C1:

前进挡离合器,接合时使输入轴与小太阳轮接合;C2:

直接挡离合器,接合时使大小太阳轮为一体;B2:

2挡制动器,用来固定大太阳轮;B3:

低、倒挡制动器,固定行星架;F1:

单向离合器,用来锁止行星架,使其单向锁止。

手柄位置

变速器挡位

执行元件状态

C1

C2

B2

B3

F1

D

1挡

2挡

3挡

2或1

1挡

2挡

R

倒挡

N位:

所有执行元件都不工作,前后行星排上所有元件均不受约束,行星齿轮机构无动力输出。

D位1档:

单向离合器F1把行星架固定,使其无法逆时针旋转,前进挡离合器C1接合,小太阳轮为动力输入元件,动力传递路线:

第一轴-小太阳轮-短行星齿轮-长行星齿轮-齿圈。

(大太阳轮转动)

D位2档:

C1前进离合器接合,2档制动器B2将大太阳轮固定,动力传递路线:

第一轴-小太阳轮-短行星齿轮-长行星齿轮-齿圈。

(大太阳轮固定)

D位3档:

C1前进离合器和C2直接挡离合器工作,大小太阳轮成为一体,长、短行星齿轮同方向旋转,由于这两套行星齿轮处于常啮合状态而无法旋转,于是整个行星齿轮系统被联成一体,以直接挡传递动力。

R位:

C2直接挡离合器工作,大太阳轮为动力输入元件,低、倒档制动器B3将行星架固定,动力传递路线:

第一轴-大太阳轮-长行星齿轮-齿圈。

2、辛普森三档变速器。

(由三个行星排组成)

它可提供3个前进挡,1个倒车挡,2个行星排共用一个太阳轮,输入轴通过前进离合器和前排齿圈相连,同时通过直接挡离合器与太阳轮相连。

前排行星架和后排齿圈均与输出轴相连。

该机构共有10个执行元件,执行机构由O/D挡离合器C0,前进挡离合器C1,直接挡离合器C2,O/D挡制动器B0,二挡滑行制动器B1、二挡制动器B2、低速倒挡制动器B3、O/D挡单向离合器F0、第一单向离合器F1和第二单向离合器F2组成。

执行元件挡位

C0

C1

C2

B0

B1

B2

B3

F0

F1

F2

D位1挡

D位2挡

D位3挡

D位4挡

2位1挡

2位2挡

2位3挡

L位1挡

L位2挡

R挡

第五章汽车防抱死制动系统

第一节概述

一、ABS的发展现状

汽车防抱死制动系统(Anti-lockBrakeSystem)是提高汽车主动安全的措施之一,它可以提高汽车制动时的方向稳定性和缩小制动距离,充分发挥汽车的制动效能。

ABS最早应用于航空领域,用于飞机着陆时的制动过程,提高飞机的制动能力,缩短跑道距离。

上世纪70年代,随着电子技术的进步,数字电子计算机的应用,ABS的电子化控制日趋成熟,使ABS系统的成本下降,体积减小,控制精度提高,工作可靠。

80年代开始批量应用,到90年代,美、日、韩产业的汽车ABS装车比例均超过70-80%。

目前ABS已成为乘用汽车和部分商用车的标准配置。

我国于上世纪80年代初开始对ABS进行研制。

国产ABS已开始批量生产,目前国内科研单位正在研究气压制动ABS,ABS与TCS联合控制,ABS与TCS、ESP联合控制,以提高汽车的操纵稳定性和安全性。

二、ABS工作原理

1、车轮滑移率

汽车在制动过程中,车轮在路面是边滚边滑的过程。

汽车未制动时,车轮处在纯滚动状态,当车轮制动抱死时,车轮在路面做滑动运动。

V:

车速,Vw:

轮速,r:

车轮半径,

车轮角速度

用滑移率S可以描述汽车制动时车轮的运动状态。

车轮纯滚动,V=VW,S=0;车轮抱死时(纯滑动时),Vw=0,S=1,车轮边滚动边滑动时,

,0

2、附着系数和滑移率的关系

(1)附着系数与路面状况有关。

干燥路面附着系数大,潮湿路面附着系数小,冰雪路面附着系数更小。

(2)在同一路面上,附着系数随滑移率变化而变化。

通常在滑移率为10%-30%范围内,附着系数会保持在最大值附近。

此外,滑移率还与轮胎形式有关,如在冰雪路面行驶时使用冬季轮胎可以减少车轮打滑现象。

当车轮抱死时,纵向附着系数有所下降,但横向附着系数降至零附近。

当横向附着力为零时,汽车失去抗侧向力的能力,此时路面有凸起或有石块时,行驶的车辆会出现甩尾现象,容易发生交通事故。

3、车轮抱死对汽车安全性能的影响

(1)前轮先抱死:

汽车失去转向能力,但汽车由于惯性作用,会继续沿原运动方向行驶。

(2)后轮先抱死:

汽车失去稳定性,由于横向附着力为零,车辆失去抗侧向力的能力,此时当路面有凸起或石子时,汽车会出现甩尾现象,发生交通事故。

4、ABS优点:

ABS可以获得最大地面制动力,缩短制动距离,同时汽车能保持制动时的方向稳定性和转向能力。

(1)保持方向稳定性。

(2)保持转向能力。

(3)缩短制动距离(在特定路面)。

(4)减少轮胎磨损。

(5)减轻驾驶员紧张情绪。

5、汽车制动性能评价:

(1)制动效能:

制动距离、制动减速度

(2)制动效能的恒定性,热衰退性能

(3)制动的方向稳定性,跑偏、侧滑、失去转向能力

制动强度z:

汽车前后轮同时抱死。

车辆不发生抱死所要求的最小路面附着系数为利用附着系数,它越接近制动强度z越好。

6、ABS技术难点:

(1)制动稳定性控制技术

(2)路面识别技术

(3)故障诊断及处理技术

第二节ABS组成、分类及控制

一、ABS组成

1、传感器

(1)车速传感器(C级轿车装配),计算车速,计算滑移率。

(2)轮速传感器,计算轮速,计算滑移率。

(3)减速度传感器,用于路面识别情况。

2、执行器

(1)制动压力调节器(HCU):

接受ECU指令,通过电磁阀的开关实现制动系统压力的调节,完成制动系统的增压、保压和减压过程。

(2)液压泵:

它是电动液压泵,受ECU控制,建立制动压力。

在可变容积式压

力调节系统中建立控制油压;在循环式压力调节系统中在减压过程把从轮缸流出的制动液经蓄能器送回到主缸,以防止ABS工作时制动踏板行程发生变化。

(3)ABS警告灯。

ABS有故障时,ABS警告灯亮,切换到常规制动系统。

3、ECU:

接收传感器的信号,并对信号进行滤波、放大、整形,根据一定的控制算法,计算出车速、轮速和滑移率,以及加、减速度,并做出增、减及保压判断,然后输出控制指令,控制制动管路中的电磁阀工作,调节制动系统压力,使滑移率控制在规定范围。

二、ABS分类

1、按生产厂家

(1)博世(BOSCH)ABS,德国

(2)戴维斯(TEVES)ABS,德国

(3)德尔科(DELCO)ABS,美国

(4)本迪克斯(BENDIX)ABS,美国

(5)瓦布科(WABCO)ABS,德国

(6)本田信友ABS,日本

(7)上海汽车制动系统有限公司,中国

2、按通道和传感器分类

(1)四通道式,有4个传感器、4个制动压力调节器。

(2)3通道式,前轮是独立控制,后轮按低选原则共用一个制动压力调节器。

(3)双通道式,前后轮各用一个制动压力调节器。

(4)单通道式,在后轮设立一个制动压力调节器。

采用何种方式与汽车配置和价格有关。

三、ABS控制技术

(一)控制方法

门限值控制,最优控制,滑模控制。

目前,多以门限值控制为主。

门限值控制多以车轮减速度、加速度为主要控制门限,将滑移率为辅助控制门限。

最新控制策略是以车轮加、减速度与滑移率门限联合控制,可以识别路面附着情况,提高制动系统的控制效果。

ECU可以计算出车轮加、减速度。

在计算滑移率时,首先以制动开始时的车速度(轮速乘以半径)为制动初速度,按给定斜率,计算出下一时刻车速,作为参考车速,再根据下一时刻的轮速计算出此时车轮的参考滑移率。

(二)控制过程

1、高附着系数路面

(1)在制动开始阶段,制动压力提高,轮速下降。

车轮减速度增大,当车轮减速度达到设定的减速度门限值-a时需要检查此时的车轮滑移率;

(2)由于车辆在高附着系数路面上行驶,此时车轮滑移率可能还处在稳定区。

所以先计算车轮滑移率。

如果滑移率小于门限值,则进入制动压力保持阶段。

当滑移率大于其门限值时,说明车轮已进入不稳定区,则进入制动压力减少阶段。

(3)由于制动压力降低,车轮在惯性力作用下又开始加速,当车轮减速度小于控制门限值-a时,应进入制动压力保持阶段。

(4)在惯性作用下车轮仍在回升加速,当加速度超过设定的加速度门限值+a后,则应增大制动压力,使车轮加速度下降,当车轮减速度再次达到-a时,计算此时的滑移率,如果滑移率小于门限值,系统再次进入保压阶段。

当滑移率大于其门限值后再次进入减压阶段,重复进行上述循环。

2、低附着路面控制

特点:

较小的制动力就会使车轮抱死,车轮滑移率超出稳定区域,此时减压过程需要较长的时间,才能使滑移率重新回到稳定区域。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工作范文 > 其它

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2