小学奥数构造、论证与染色、操作问题.doc

上传人:wj 文档编号:3900506 上传时间:2023-05-06 格式:DOC 页数:24 大小:2.91MB
下载 相关 举报
小学奥数构造、论证与染色、操作问题.doc_第1页
第1页 / 共24页
小学奥数构造、论证与染色、操作问题.doc_第2页
第2页 / 共24页
小学奥数构造、论证与染色、操作问题.doc_第3页
第3页 / 共24页
小学奥数构造、论证与染色、操作问题.doc_第4页
第4页 / 共24页
小学奥数构造、论证与染色、操作问题.doc_第5页
第5页 / 共24页
小学奥数构造、论证与染色、操作问题.doc_第6页
第6页 / 共24页
小学奥数构造、论证与染色、操作问题.doc_第7页
第7页 / 共24页
小学奥数构造、论证与染色、操作问题.doc_第8页
第8页 / 共24页
小学奥数构造、论证与染色、操作问题.doc_第9页
第9页 / 共24页
小学奥数构造、论证与染色、操作问题.doc_第10页
第10页 / 共24页
小学奥数构造、论证与染色、操作问题.doc_第11页
第11页 / 共24页
小学奥数构造、论证与染色、操作问题.doc_第12页
第12页 / 共24页
小学奥数构造、论证与染色、操作问题.doc_第13页
第13页 / 共24页
小学奥数构造、论证与染色、操作问题.doc_第14页
第14页 / 共24页
小学奥数构造、论证与染色、操作问题.doc_第15页
第15页 / 共24页
小学奥数构造、论证与染色、操作问题.doc_第16页
第16页 / 共24页
小学奥数构造、论证与染色、操作问题.doc_第17页
第17页 / 共24页
小学奥数构造、论证与染色、操作问题.doc_第18页
第18页 / 共24页
小学奥数构造、论证与染色、操作问题.doc_第19页
第19页 / 共24页
小学奥数构造、论证与染色、操作问题.doc_第20页
第20页 / 共24页
亲,该文档总共24页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

小学奥数构造、论证与染色、操作问题.doc

《小学奥数构造、论证与染色、操作问题.doc》由会员分享,可在线阅读,更多相关《小学奥数构造、论证与染色、操作问题.doc(24页珍藏版)》请在冰点文库上搜索。

小学奥数构造、论证与染色、操作问题.doc

第十三讲:

构造与论证

教学目标

1.掌握最佳安排和选择方案的组合问题.

2.利用基本染色去解决相关图论问题.

知识点拨

各种探讨给定要求能否实现,在论证中,有时需进行分类讨论,有时则要着眼于极端情形,或从整体把握.设计最佳安排和选择方案的组合问题,这里的最佳通常指某个量达到最大或最小.解题时,既要构造出取得最值的具体实例,又要对此方案的最优性进行论证.论证中的常用手段包括抽屉原则、整除性分析和不等式估计.

组合证明题,在论证中,有时需进行分类讨论,有时则需要着眼于极端情况,或从整体把握。

若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题。

若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题,这里宜从特殊的点或线着手进行分析.各种以染色为内容,或通过染色求解的组合问题,基本的染色方式有相间染色与条形染色.

例题精讲

模块一最佳安排和选择方案

【例1】一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚.下面我们对这些棋子做如下操作:

每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是颜色(填“黑”或者“白”).

【解析】在每一次操作中,若拿出的两枚棋子同色,则补黑子1枚,所以拿出的白子可能为0枚或2枚;若拿出的两枚棋子异色,则补白子1枚,“两枚棋子异色”说明其中一黑一白,那么此时拿出的白子数为0枚.可见每次操作中拿出的白子都是偶数枚,而由于起初白子有200枚,是偶数枚,所以每次操作后剩下的白子都是偶数枚,因此最后1枚不可能是白子,只能是黑子.

【例2】5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第5卷到第1卷.如果每次只能调换相邻的两卷,那么最少要调换多少次?

【解析】因为必须是调换相邻的两卷,将第5卷调至原来第1卷的位置最少需4次,得到的顺序为51234;

现在将第4卷调至此时第l卷的位置最少需3次,得到的顺序为54123;

现在将第3卷调至此时第l卷的位置最少需2次,得到的顺序为54312;

最后将第l卷和第2卷对调即可.

所以,共需调换4+3+2+1=10次.

【例3】有3堆小石子,每次允许进行如下操作:

从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:

(1)某2堆石子全部取光?

(2)3堆中的所有石子都被取走?

【解析】

(1)可以,如(1989,989,89)(1900,900,0)(950,900,950)(50,0,50)(25,25,50)(O,0,25).

(2)因为操作就两种,每堆取走同样数目的小石子,将有偶数堆石子堆中一半移至另一堆,所

以每次操作石子总数要么减少3的倍数,要么不变.

现在共有1989+989+89=3067,不是3的倍数,所以不能将3堆中所有石子都取走.

【例4】n支足球队进行比赛,比赛采用单循环制,即每对均与其他各队比赛一场.现规定胜一场得2分,平一场得1分,负一场得0分.如果每一队至少胜一场,并且所有各队的积分都不相同,问:

(1)n=4是否可能?

(2)n=5是否可能?

【解析】

(1)我们知道4个队共进行了场比赛,而每场比赛有2分产生,所以4个队的得分总和为×2=12.因为每一队至少胜一场,所以得分最低的队至少得2分,又要求每个队的得分都不相同,所以4个队得分最少2+3+4+5=14>12,不满足.即n=4不可能。

(2)我们知道5个队共进行场比赛,而每场比赛有2分产生,所以4个队的得分总和为×2=20.因为每一队至少胜一场,所以得分最低的队至少得2分,又要求每个队的得分都不相同,所以5个队得分最少为2+3+4+5+6=20,满足.即n=5有可能.但是我们必须验证是否存在实例.如下所示,A得2分,C得3分,D得4分,B得5分,E得6分.其中“AB”表示A、B比赛时,A胜B;“B--C”表示B、C比赛时,B平C,

余下类推.

【例5】如图35-1,将1,2,3,4,5,6,7,8,9,10这10个数分别填入图中的10个圆圈内,使任意连续相邻的5个圆圈内的各数之和均不大于某个整数M.求M的最小值并完成你的填图.

【解析】要使M最小,就要尽量平均的填写,因为如果有的连续5个圆圈内的数特别小,有的特别大,那么M就只能大于等于特别大的数,不能达到尽量小的目的.

因为每个圆圈内的数都用了5次,所以10次的和为5×(1+2+3+…+10)=275.

每次和都小于等于朋,所以IOM大于等于275,整数M大于28.

下面来验证M=28时是否成立,注意到圆圈内全部数的总和是55,所以肯定是一

边五个的和是28,

一边是27.因为数字都不一样,所以和28肯定是相间排列,和27也是相问排列,也就是说数组每

隔4个差值为l,这样从1填起,容易排出适当的填图.

【例6】(2009年清华附中入学测试题)如图,在时钟的表盘上任意作个的扇形,使得每一个扇形都恰好覆盖个数,且每两个扇形覆盖的数不全相同,求证:

一定可以找到个扇形,恰好覆盖整个表盘上的数.并举一个反例说明,作个扇形将不能保证上述结论成立.

【解析】要在表盘上共可作出12个不同的扇形,且1~12中的每个数恰好被4个扇形覆盖.将这12个扇形分为4组,使得每一组的3个扇形恰好盖住整个表盘.那么,根据抽屉原理,从中选择9个扇形,必有个扇形属于同一组,那么这一组的3个扇形可以覆盖整个表盘.

另一方面,作8个扇形相当于从全部的12个扇形中去掉4个,则可以去掉盖住同一个数的4个扇形,这样这个数就没有被剩下的8个扇形盖住,那么这8个扇形不能盖住整个表盘.

【例7】一组互不相同的自然数,其中最小的数是l,最大的数是25,除1之外,这组数中的任一个数或者等于这组数中某一个数的2倍,或者等于这组数中某两个数之和.问:

这组数之和的最小值是多少?

当取到最小值时,这组数是怎样构成的?

【解析】首先把这组数从小到大排列起来,那么最小的肯定为1,1后面只能是1的2倍即2,2后面可以是3或4,3的后面可以是4,5,6;4的后面可以是5,6,8.最大的为25.下面将所有的可能情况列出:

l,2,3,4,…,25所有的和是35;

l,2,3,5,…,25所有的和是36;

1,2,3,6,…,25所有的和是37;

1,2,4,5,…,25所有的和是37;

1,2,4,6,…,25所有的和是38;

1,2,4,8,…,25所有的和是40.

25是奇数,只能是一个偶数加上一个奇数.在中间省略的数中不能只有1个数,所以至少还要添加两个数,而且这两个数的和不能小于25,否则就无法得到25这个数.要求求出最小值,先看这两个数的和是25的情况,因为省略的两个数不同于前面的数,所以从20+5开始.

25=20+5=19+6=18+7=17+8=16+9=15+10=14+11=13+12.

这些数中20,19,18,17太大,无法产生,所以看:

16+9=15+10=14+11=13+12.

看这些谁能出现和最小的l,2,3,4,…,25中,检验发现没有可以满足的:

再看l,2,3,5,…,25,发现1,2,3,5,10,15,25满足,所以:

1+2+3+5+10+15+25=36+25=61

【例8】2004枚棋子,每次可以取1、3、4、7枚,最后取的获胜。

甲、乙轮流取,如果甲先取,如何才能保证赢?

【解析】先从简单的情况看起,看看棋子数量较少时,在什么情况下先取者胜,什么情况下后取者胜.可以列表如下:

棋子数量

先取者胜

后取者胜

1枚

2枚

3枚

4枚

5枚

6枚

7枚

8枚

9枚

10枚

11枚

12枚

13枚

14枚

15枚

16枚

17枚

18枚

19枚

20枚

棋子数是1~8时比较容易看得出来是先取者胜还是后取者胜,可以看出只有棋子数是2枚和8枚时是后取者胜,其他情况下都是先取者胜.

当棋子数大于8时,可以先取若干枚棋子,使得剩下的棋子数变成前面已有的棋子数.先取者为了取胜,第一次取后,应该使剩下的棋子数是后取者胜的情况,比如变成剩下2枚或8枚.这样推下去,可以发现只有当棋子数是8的倍数或者除以8余2时,是后取者胜,其他情况下是先取者胜.

题目中有2004枚棋子,除以8余4,所以先取者肯定可以取胜.不过取胜的策略比较灵活,不能明确地说每次后取者取多少枚先取者就相应地取多少枚,应该从除以8的余数来考虑:

⑴先取者第一次可以先取4枚,这样还剩下2000枚,2000除以8的余数是0;

⑵先取者为了保证获胜,在每一次后取者取了之后,先取者再取的时候,应该使得自己取后剩下的棋子数是8的倍数或者除以8余2;

⑶后取者每次可以取1,3,4,7枚,每次先取者取后剩下的棋子数除以8的余数是0或2,所以每次后取者取后剩下的棋子数除以8的余数是7,5,4,1或1,7,6,3.

所以接下来先取者可以对应地取7,3,4,1或1,7,4,3枚棋子,这样剩下的剩下的棋子数除以8的余数为0,2,0,0或0,0,2,0.

这样就保证了第⑵点.

⑷每次先取者取后剩下的棋子数除以8的余数是0或2,那么最后一枚棋子肯定是先取者取得,所以先取者获胜.

【例9】在10×19方格表的每个方格内,写上0或1,然后算出每行及每列的各数之和.问最多能得到多少个不同的和数?

【解析】首先每列的和最少为0,最多是10,每行的和最少是0,最多是19,所以不同的和最多也就是0,1,2,3,4,…,18,19这20个.

下面我们说明如果0出现,那么必然有另外一个数字不能出现.

如果0出现在行的和中,说明有1行全是0,意味着列的和中至多出现0到9,加上行的和至多出现10个数字,所以少了一种可能.

如果0出现在列的和中,说明在行的和中19不可能出现,所以0出现就意味着另一个数字不能出现,所以至多是19,下面给出一种排出方法.

【例10】在8×8的国际象棋盘上最多能够放置多少枚棋子,使得棋盘上每行、每列及每条斜线上都有偶数枚棋子?

【解析】因为8×8的国际象棋盘上的每行、每列都正好有偶数格,若某行(某列)有空格,必空偶数格.而斜线上的格子数有奇也有偶,不妨从左上角的斜线看起:

第一条斜线只有1格,必空;第三条有3格,必至少空1格;第五、七条分别有5、7格,每条线上至少空1格.由对称性易知共有16条斜线上有奇数格,且这16条斜线没有共用的格子,故至少必空出16格.其实,空出两条主对角线上的16个格子就合题意.此时,最多可放置48枚棋子,放在除这两条主对角线外的其余格子中,如下图所示.

【例11】在下图中有16个黑点,它们排成了一个4×4的方阵.用线段连接其中4点,就可以画出各种不同的正方形.现在要去掉某些点,使得其中任意4点都不能连成正方形,那么最少要去掉多少个点?

【解析】至少要除去6个点,如下所示为几种方法:

【例12】三个边长为1的正方形并排放在一起,成为1×3的长方形.求证:

.

【解析】仔细分析,要证,

由于,所以,只需证明就可以了!

于是想到能否把()移动位

置,与()拼合在一起,恰成一个的角呢?

于是想到:

如图1所示,再拼上一个单位正方形DFK,则三角形AKC为等腰直角三角形,,又直角三角形KCF与AHD全等,所以.因此,.

有了拼合与的思想,学生往往产生不同的拼合方式,沿着拼合全等的思路发散开来,又可以找到许多拼法.如图2三角形AHP是等腰直角三角形,,

所以.

如图3三角形AQC是等腰直角三角形,,.

如图4三角形WDB是等腰直角三角形,,.所以.

如图5三角形ZAH是等腰直角三角形,因此.其他的沿着“拼合全等”的思路的证法就不例举了.

如果利用相似三角形的知识,如图5所示,又所以,

,因此∽,但,.用相似三角形法不用添设辅助线,简洁明了.再开思路,可用三角法证明如下:

与都是小于的锐角,可知+是锐角.又,.

,所以.

模块二染色与赋值问题

【例13】某学校的学生中,没有一个学生读过学校图书馆的所有图书,又知道图书馆内任何两本书都至少被一个同学都读过.问:

能否找到两个学生甲、乙和三本书4、B、C,使得甲读过A、B,没读过C,乙读过B、C,没读过A?

说明判断过程.

【解析】首先从读书数最多的学生中找一人甲.由题设,甲至少有一本书未读过,记为C.设B是甲读过的书中一本,由题意知,可找到学生乙,乙读过B、C.由于甲是读书数最多的学生之一,乙读书数不能超过甲的读书数,而乙读过C书,甲未读过C书,所以一定可以找出一本书A,使得甲读过而乙未读过,否则乙就比甲至少多读过一本书.这样一来,甲读过A、B,未读过C;乙读过B、C未读过A.因此可以找到满足要求的两个学生.

【例14】4个人聚会,每人各带2件礼品,分赠给其余3个人中的2人.试证明:

至少有2对人,每对人是互赠过礼品的.

【解析】将这四个人用4个点表示,如果两个人之间送过礼,就在两点之间连一条线.

由于每人送出2件礼物,图中共有4×2=8条线,由于每人礼品都分赠给2个人,所以每两点之间至多有1+1=2条线。

四点间,每两点连一条线,一共6条线,现在有8条线,说明必有两点之间连了2条线,还有另外两点(有一点可以与前面的点相同)之间也连了2条线.

即为所证结论。

【例15】甲、乙、丙三个班人数相同,在班级之间举行象棋比赛.各班同学都按l,2,3,4,…依次编号.当两个班比赛时,具有相同编号的同学在同一台对垒.在甲、乙两班比赛时,有15台是男、女生对垒;在乙、丙班比赛时,有9台是男、女生对垒.试说明在甲、丙班比赛时,男、女生对垒的台数不会超过24.并指出在什么情况下,正好是24?

【解析】不妨设甲、乙比赛时,1~15号是男女对垒,乙、丙比赛时.在1~15号中有a台男女对垒,15号之后有9-a台男女对垒(0≤a≤9)

甲、丙比赛时,前15号,男女对垒的台数是15-a(如果1号乙与1号丙是男女对垒,那么1号甲与1号丙就不是男女对垒),15号之后,有9-a台男女对垒.所以甲、丙比赛时,男女对垒的台数为

15-a+9-a=24-2a≤24.

仅在a=0,即必须乙、丙比赛时男、女对垒的号码,与甲、乙比赛时男、女对垒的号码完全不同,甲、丙比赛时,男、女对垒的台数才等于24.

【例16】将5×9的长方形分成10个边长为整数的长方形.证明:

无论怎样分法.分得的长方形中必有两个是完全相同的.

【解析】10个边长为整数的长方形,其面积显然也均是正整数.划分出的长方形按面积从小到大为:

1×1,1×2,l×3,1×4,2×2,1×5,1×6,2×3,1×7,1×8,2×4,1×9,3×3.2×5,2×6,3×4,2×7,3×5,2×8,4×4,2×9,3×6,……从这些长方形中选出lO个不同的长方形,其面积和最小为:

1×1+1×2+1×3+1×4+2×2+1×5+1×6+2×3+1×7+1×8=46.而原长方形的面积为5×9=45<46.所以分出的长方形必定有某两个是完全一样的.

【例17】在平面上有7个点,其中任意3个点都不在同一条直线上.如果在这7个点之字连结18条线段,那么这些线段最多能构成多少个三角形?

【解析】平面上这7个点,任意3点都不在同一条直线上,若任意2点连接,共可连接出=7×6÷2=21条线段.现在只连接18条线段,有3条没有连出,要使得这18条线段所构成的三角形最多,需使得没连出的这3条线段共同参与的三角形总数最多,故这3条线断共点.对于这3条线段中的任何一条,还与其他5个点本应构成5个三角形,故这3条线段没连出,至少少构成5×3-3=12个三角形.

如上图所示,在图中AD、AE、AF之间未连接,因为其中ADE、AED,ADF、AFD,AEF、AFE被重复计算,所以减去3.而平面内任何三点不共线的7个点,若任何2点连线,最多可构成=35个三角形.故现在最多可构成三角形35-12=23个.

【例18】在9×9棋盘的每格中都有一只甲虫,根据信号它们同时沿着对角线各自爬到与原来所在格恰有一个公共顶点的邻格中,这样某些格中有若干只甲虫,而另一些格则空着.问空格数最少是多少?

【解析】方法一:

考虑到甲虫总是斜着爬,我们把棋盘黑白相间染色,发现原来黑色格子里的甲虫都会爬到黑色的格子里面,而白色格子里面的甲虫都会爬到白色格子里面,所以我们只用观察最少能空出多少个黑格子,多少个白格子.

因为甲虫每次都从奇数行爬到偶数行,偶数行爬到奇数行,而由奇数行有25个黑格子,偶数行有16个黑格子知,偶数行的16只甲虫爬到奇数行会空出9个黑格子,而奇数行的25只虫子爬到偶数行就可以没有空格.白格子虫子也会从奇数行爬到偶数行,偶数行爬到奇数行,但是奇数行和偶数行都是20个格子,最少的情况下不会出现空格子,所以最少出现9个空格.

方法二:

①对2×2棋盘如下黑白染色,则易知两黑格及两白格分别对换甲虫即可使棋盘格不空;从而得到2n×2n棋盘可划分为若干块2×2棋盘,棋盘格均不空.

②对3×3棋盘如下黑白染色,注意到图中有5个黑格,黑格中的甲虫爬行后必进入黑格,且四个角上的黑格内的甲虫必爬人中心黑格,而中心黑格内的甲虫只能爬人某一格,必至少空3个黑格.

③对5×5棋盘黑白染色后,利用①、②的结论易知至少空5个黑格.

④依次类推,可知对9×9棋盘黑白染色后,至少空9个空格.下图是甲虫爬行的一种方法.

【例19】若干台计算机联网,要求:

①任意两台之间最多用一条电缆连接;

②任意三台之间最多用两条电缆连接;

③两台计算机之间如果没有电缆连接,则必须有另一台计算机和它们都连接有电缆.若按此要求最少要用79条电缆.

问:

(1)这些计算机的数量是多少台?

(2)这些计算机按要求联网,最多可以连多少条电缆?

【解析】将机器当成点,连接电缆当成线,我们就得到一个图,如果从图上一个点出发,可以沿着线跑到图上任一个其它的点,这样的图就称为连通的图,条件③表明图是连通图.

我们看一看几个点的连通图至少有多少条线.可以假定图没有圈(如果有圈,就在圈上去掉一条线),从一点出发,不能再继续前进,将这一点与连结这点的线去掉.考虑剩下的n-1个点的图,它仍然是连通的.用同样的办法又可去掉一点及一条线.这样继续下去,最后只剩下一个点.因此n个点的连通图至少有n-1条线(如果有圈,线的条数就会增加),并且从一点A向其他n-1个点各连一条线,这样的图恰好有n-1条线.

因此,

(1)的答案是n=79+1=80,并且将一台计算机与其他79台各用一条线相连,就得到符合要求的联网.

下面看看最多连多少条线.

在这80个点(80台计算机)中,设从引出的线最多,有k条,与相连的点是,,…,由于条件,,…,之间没有线相连.

设与不相连的点是,…,,则m+k=80,而,…,每一点至多引出k条线,图中至多有mk条线,因为≤

所以m×k≤1600,即连线不超过1600条.

另一方面,设80个点分为两组:

…,;,…,第一组的每一点与第二组的每一点各用一条线相连,这样的图符合题目要求,共有40×40=1600条线

【例20】在一个6×6的方格棋盘中,将若干个1×1的小方格染成红色.如果随意划掉3行3列,在剩下的小方格中必定有一个是红色的.那么最少要涂多少个方格?

【解析】方法一:

显然,我们先在每行、每列均涂一个方格,使之成为红色,如图A所示,但是在图B中,划去3行3列后,剩下的方格没有红色的,于是再将两个方格涂成红色(依据对称性,应将2个方格同时涂成红色),如图C所示,但是图D的划法,又使剩下的方格没有红色,于是再将两个方格涂成红色(还是由于对称的缘故,将2个方格涂成红色),得到图E,图E不管怎么划去3行3列,都能使剩下的方格含有红色的.

这时共涂了10个方格.

方法二:

一方面,图F表明无论去掉哪三行哪三列总会留下一个涂红的方格.

另一方面,如果只涂9个红色方格,那么红格最多的三行至少有6个红格(否则第三多的行只有1个红格,红格总数≤5+3=8),去掉这三行至多还剩3个红格,再去掉三列即可将这三个红格也去掉.

综上所述,至少需要将10个方格涂成红色.

【例21】如图,把正方体的6个表面剖分成9个相等的正方形.现用红、黄、蓝3种颜色去染这些小正方形,要求有公共边的正方形所染的颜色不同.那么染成红色的正方形的个数最多是多少个?

【解析】如上面右图所示,它们的对面也同样的染色,这样就有(5+4+2)×2=22(个)方格染色,而且有公共边的正方形颜色不同.所以,用红色染成的正方形的个数最多是22个.

【例22】证明:

在6×6×6的正方体盒子中最多可放入52个1×l×4的小长方体,这里每个小长方体的面都要与盒子的侧面平行.

【解析】先将6×6×6的正方体盒子视为实体,那么6×6×6的正方体可分成216个小正方体,这216个小正方体可以组成27个棱长为2的正方体.我们将这27个棱长为2的正方体按黑白相间染色,如下图所示.

其中有14个黑色的,13个白色的,而一个白色的2×2×2的正方体可以对应的放人4个每个面都与盒子侧面平行的1×l×4的小长方体,所以最多可以放入13×4=52个1×1×4的小长方体.

注:

6×6×6的正方体的体积为216,1×1×4的小长方体的体积为4,所以可放入的小正方体数目不超过216÷4=54个.

【例23】用若干个l×6和1×7的小长方形既不重叠,也不留孔隙地拼成一个11×12的大长方形,最少要用小长方形多少个?

【解析】我们先通过面积计算出最优情况:

11×12=132,设用1×6的小长方形x个,用1×7的小长方形y个,有.

解得:

(t为可取0的自然数),共需x+y=19+t个小长方形.

(1)当t=0时,即x+y=1+18=19,表示其中的1×6的小长方形只有1个,剩下的18个小长方形都是

l×7的.

大长方形中无论是1行还是1列,最多都只能存在1个l×7的小长方形,所以在大长方形中最多只能无重叠的同时存在16个l×7的小长方形.

现在却存在18个1×7的小长方形,显然不满足;

(2)当t=l时,即x+y=8+12=20,有如下分割满足,所以最少要用小长方形20个.

课后练习

练习1.在1997×1997的正方形棋盘上的每格都装有一

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 表格模板 > 合同协议

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2