通信网络等基础总结Word格式文档下载.docx

上传人:b****1 文档编号:3989045 上传时间:2023-05-02 格式:DOCX 页数:46 大小:84.35KB
下载 相关 举报
通信网络等基础总结Word格式文档下载.docx_第1页
第1页 / 共46页
通信网络等基础总结Word格式文档下载.docx_第2页
第2页 / 共46页
通信网络等基础总结Word格式文档下载.docx_第3页
第3页 / 共46页
通信网络等基础总结Word格式文档下载.docx_第4页
第4页 / 共46页
通信网络等基础总结Word格式文档下载.docx_第5页
第5页 / 共46页
通信网络等基础总结Word格式文档下载.docx_第6页
第6页 / 共46页
通信网络等基础总结Word格式文档下载.docx_第7页
第7页 / 共46页
通信网络等基础总结Word格式文档下载.docx_第8页
第8页 / 共46页
通信网络等基础总结Word格式文档下载.docx_第9页
第9页 / 共46页
通信网络等基础总结Word格式文档下载.docx_第10页
第10页 / 共46页
通信网络等基础总结Word格式文档下载.docx_第11页
第11页 / 共46页
通信网络等基础总结Word格式文档下载.docx_第12页
第12页 / 共46页
通信网络等基础总结Word格式文档下载.docx_第13页
第13页 / 共46页
通信网络等基础总结Word格式文档下载.docx_第14页
第14页 / 共46页
通信网络等基础总结Word格式文档下载.docx_第15页
第15页 / 共46页
通信网络等基础总结Word格式文档下载.docx_第16页
第16页 / 共46页
通信网络等基础总结Word格式文档下载.docx_第17页
第17页 / 共46页
通信网络等基础总结Word格式文档下载.docx_第18页
第18页 / 共46页
通信网络等基础总结Word格式文档下载.docx_第19页
第19页 / 共46页
通信网络等基础总结Word格式文档下载.docx_第20页
第20页 / 共46页
亲,该文档总共46页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

通信网络等基础总结Word格式文档下载.docx

《通信网络等基础总结Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《通信网络等基础总结Word格式文档下载.docx(46页珍藏版)》请在冰点文库上搜索。

通信网络等基础总结Word格式文档下载.docx

在对每个载波完成调制以后,为了增加数据的吞吐量、提高数据传输的速度,它又采用了一种叫作HomePlug的处理技术,来对所有将要被发送数据信号位的载波进行合并处理,把众多的单个信号合并成一个独立的传输信号进行发送。

另外OFDM之所以备受关注,其中一条重要的原因是它可以利用离散傅立叶反变换/离散傅立叶变换(IDFT/DFT)代替多载波调制和解调。

OFDM增强了抗频率选择性衰落和抗窄带干扰的能力。

在单载波系统中,单个衰落或者干扰可能导致整个链路不可用,但在多载波的OFDM系统中,只会有一小部分载波受影响。

此外,纠错码的使用还可以帮助其恢复一些载波上的信息。

通过合理地挑选子载波位置,可以使OFDM的频谱波形保持平坦,同时保证了各载波之间的正交。

OFDM尽管还是一种频分复用(FDM),但已完全不同于过去的FDM。

OFDM的接收机实际上是通过FFT实现的一组解调器。

它将不同载波搬移至零频,然后在一个码元周期内积分,其他载波信号由于与所积分的信号正交,因此不会对信息的提取产生影响。

OFDM的数据传输速率也与子载波的数量有关。

OFDM每个载波所使用的调制方法可以不同。

各个载波能够根据信道状况的不同选择不同的调制方式,比如BPSK、QPSK、8PSK、16QAM、64QAM等等,以频谱利用率和误码率之间的最佳平衡为原则。

我们通过选择满足一定误码率的最佳调制方式就可以获得最大频谱效率。

无线多径信道的频率选择性衰落会使接收信号功率大幅下降,经常会达到30dB之多,信噪比也随之大幅下降。

为了提高频谱利用率,应该使用与信噪比相匹配的调制方式。

可靠性是通信系统正常运行的基本考核指标,所以很多通信系统都倾向于选择BPSK或QPSK调制,以确保在信道最坏条件下的信噪比要求,但是这两种调制方式的频谱效率很低。

OFDM技术使用了自适应调制,根据信道条件的好坏来选择不同的调制方式。

比如在终端靠近基站时,信道条件一般会比较好,调制方式就可以由BPSK(频谱效率1bit/s/Hz)转化成16QAM-64QAM(频谱效率4~6bit/s/Hz),整个系统的频谱利用率就会得到大幅度的提高。

自适应调制能够扩大系统容量,但它要求信号必须包含一定的开销比特,以告知接收端发射信号所应采用的调制方式。

终端还要定期更新调制信息,这也会增加更多的开销比特。

OFDM还采用了功率控制和自适应调制相协调工作方式。

信道好的时候,发射功率不变,可以增强调制方式(如64QAM),或者在低调制方式(如QPSK)时降低发射功率。

功率控制与自适应调制要取得平衡。

也就是说对于一个发射台,如果它有良好的信道,在发送功率保持不变的情况下,可使用较高的调制方案如64QAM;

如果功率减小,调制方案也就可以相应降低,使用QPSK方式等。

自适应调制要求系统必须对信道的性能有及时和精确的了解,如果在差的信道上使用较强的调制方式,那么就会产生很高的误码率,影响系统的可用性。

OFDM系统可以用导频信号或参考码字来测试信道的好坏。

发送一个已知数据的码字,测出每条信道的信噪比,根据这个信噪比来确定最适合的调制方式。

什么是OFDMOFDM的英文全称为OrthogonalFre-quencyDivisionMultiplexing,中文含义为正交频分复用技术。

这种技术是HPA联盟(HomePlugPowerlineAlliance)工业规范的基础,它采用一种不连续的多音调技术,将被称为载波的不同频率中的大量信号合并成单一的信号,从而完成信号传送。

由于这种技术具有在杂波干扰下传送信号的能力,因此常常会被利用在容易受外界干扰或者抵抗外界干扰能力较差的传输介质中。

其实,OFDM并不是如今发展起来的新技术,OFDM技术的应用已有近40年的历史,主要用于军用的无线高频通信系统。

但是,一个OFDM系统的结构非常复杂,从而限制了其进一步推广。

直到上世纪70年代,人们采用离散傅立叶变换来实现多个载波的调制,简化了系统结构,使得OFDM技术更趋于实用化。

80年代,人们研究如何将OFDM技术应用于高速MODEM。

进入90年代以来,OFDM技术的研究深入到无线调频信道上的宽带数据传输。

目前OFDM技术已经被广泛应用于广播式的音频、视频领域和民用通信系统,主要的应用包括:

非对称的数字用户环路(ADSL)、ETSI标准的数字音频广播(DAB)、数字视频广播(DVB)、高清晰度电视(HDTV)、无线局域网(WLAN)等。

=========================================================QAMQAM(QuadratureAmplitudeModulation)数字调制器作为DVB系统的前端设备,接收来自编码器、复用器、DVB网关、视频服务器等设备的TS流,进行RS编码、卷积编码和QAM数字调制,输出的射频信号可以直接在有线电视网上传送,同时也可根据需要选择中频输出。

它以其灵活的配置和优越的性能指标,广泛的应用于数字有线电视传输领域和数字MMDS系统。

QAM调制技术在QAM(正交幅度调制)中,数据信号由相互正交的两个载波的幅度变化表示。

模拟信号的相位调制和数字信号的PSK(相移键控)可以被认为是幅度不变、仅有相位变化的特殊的正交幅度调制。

因此,模拟信号频率调制和数字信号的FSK(频移键控)也可以被认为是QAM的特例,因为它们本质上就是相位调制。

这里主要讨论数字信号的QAM,虽然模拟信号QAM也有很多应用,例如NTSC和PAL制式的电视系统就利用正交的载波传输不同的颜色分量。

有关PSK和FSK方面的知识在本系列丛书《网络工程师必读——网络工程基础》一书中有详细介绍,参见即可。

QAM是一种矢量调制,将输入比特先映射(一般采用格雷码)到一个复平面(星座)上,形成复数调制符号,然后将符号的I、Q分量(对应复平面的实部和虚部,也就是水平和垂直方向)采用幅度调制,分别对应调制在相互正交(时域正交)的两个载波(coswt和sinwt)上。

这样与幅度调制(AM)相比,其频谱利用率将提高1倍。

QAM是幅度、相位联合调制的技术,它同时利用了载波的幅度和相位来传递信息比特,因此在最小距离相同的条件下可实现更高的频带利用率,目前QAM最高已达到1024-QAM(1024个样点)。

样点数目越多,其传输效率越高,例如具有16个样点的16-QAM信号,每个样点表示一种矢量状态,16-QAM有16态,每4位二进制数规定了16态中的一态,16-QAM中规定了16种载波和相位的组合,16-QAM的每个符号和周期传送4比特。

QAM调制器的原理是发送数据在比特/符号编码器(也就是串–并转换器)内被分成两路,各为原来两路信号的1/2,然后分别与一对正交调制分量相乘,求和后输出。

接收端完成相反过程,正交解调出两个相反码流,均衡器补偿由信道引起的失真,判决器识别复数信号并映射回原来的二进制信号。

作为调制信号的输入二进制数据流经过串–并变换后变成四路并行数据流。

这四路数据两两结合,分别进入两个电平转换器,转换成两路4电平数据。

例如,00转换成-3,01转换成-1,10转换成1,11转换成3。

这两路4电平数据g1(t)和g2(t)分别对载波cos2πfct和sin2πfct进行调制,然后相加,即可得到16-QAM信号。

类似于其他数字调制方式,QAM发射的信号集可以用星座图方便地表示,星座图上每一个星座点对应发射信号集中的那一点。

星座点经常采用水平和垂直方向等间距的正方网格配置,当然也有其他的配置方式。

数字通信中数据常采用二进制数表示,这种情况下星座点的个数一般是2的幂。

常见的QAM形式有16-QAM、64-QAM、256-QAM等。

星座点数越多,每个符号能传输的信息量就越大。

但是,如果在星座图的平均能量保持不变的情况下增加星座点,会使星座点之间的距离变小,进而导致误码率上升。

因此高阶星座图的可靠性比低阶要差。

采用QAM调制技术,信道带宽至少要等于码元速率,为了定时恢复,还需要另外的带宽,一般要增加15%左右。

与其他调制技术相比,QAM编码具有能充分利用带宽、抗噪声能力强等优点。

QAM调制技术用于ADSL的主要问题是如何适应不同电话线路之间较大但的性能差异。

要取得较为理想的工作特性,QAM接收器需要一个和发送端具有相同的频谱和相应特性的输入信号用于解码,QAM接收器利用自适应均衡器来补偿传输过程中信号产生的失真,因此采用QAM的ADSL系统的复杂性来自于它的自适应均衡器。

当对数据传输速率的要求高过8-PSK能提供的上限时,一般采用QAM的调制方式。

因为QAM的星座点比PSK的星座点更分散,星座点之间的距离因此更大,所以能提供更好的传输性能。

但是QAM星座点的幅度不是完全相同的,所以它的解调器需要能同时正确检测相位和幅度,不像PSK解调只需要检测相位,这增加了QAM解调器的复杂性。

=====================================================交换机与路由器区别交换机(Switch)是一种基于MAC(网卡的硬件地址)识别,能完成封装转发数据包功能的网络设备。

交换机可以“学习”MAC地址,并把其存放在内部地址表中,通过在数据帧的始发者和目标接收者之间建立临时的交换路径,使数据帧直接由源地址到达目的地址。

现在的交换机分为:

二层交换机,三层交换机或是更高层的交换机。

三层交换机同样可以有路由的功能,而且比低端路由器的转发速率更快。

它的主要特点是:

一次路由,多次转发。

·

路由器(Router)亦称选径器,是在网络层实现互连的设备。

它比网桥更加复杂,也具有更大的灵活性。

路由器有更强的异种网互连能力,连接对象包括局域网和广域网。

过去路由器多用于广域网,近年来,由于路由器性能有了很大提高,价格下降到与网桥接近,因此在局域网互连中也越来越多地使用路由器。

路由器是一种连接多个网络或网段的网络设备,它能将不同网络或网段之间的数据信息进行“翻译”,以使它们能够相互“读”懂对方的数据,从而构成一个更大的网络。

路由器有两大典型功能,即数据通道功能和控制功能。

数据通道功能包括转发决定、背板转发以及输出链路调度等,一般由特定的硬件来完成;

控制功能一般用软件来实现,包括与相邻路由器之间的信息交换、系统配置、系统管理等。

就路由器与交换机来说,主要区别体现在以下几个方面:

(1)工作层次不同最初的的交换机是工作在OSI/RM开放体系结构的数据链路层,也就是第二层,而路由器一开始就设计工作在OSI模型的网络层。

由于交换机工作在OSI的第二层(数据链路层),所以它的工作原理比较简单,而路由器工作在OSI的第三层(网络层),可以得到更多的协议信息,路由器可以做出更加智能的转发决策。

(2)数据转发所依据的对象不同交换机是利用物理地址或者说MAC地址来确定转发数据的目的地址。

而路由器则是利用不同网络的ID号(即IP地址)来确定数据转发的地址。

IP地址是在软件中实现的,描述的是设备所在的网络,有时这些第三层的地址也称为协议地址或者网络地址。

MAC地址通常是硬件自带的,由网卡生产商来分配的,而且已经固化到了网卡中去,一般来说是不可更改的。

而IP地址则通常由网络管理员或系统自动分配。

(3)传统的交换机只能分割冲突域,不能分割广播域;

而路由器可以分割广播域由交换机连接的网段仍属于同一个广播域,广播数据包会在交换机连接的所有网段上传连接到路由器上的网段会被分配成不同的广播,在某些情况下会导致通信拥挤和安全漏洞。

播域,广播数据不会穿过路由器。

虽然第三层以上交换机具有VLAN功能,也可以分割广播域,但是各子广播域之间是不能通信交流的,它们之间的交流仍然需要路由器。

(4)路由器提供了防火墙的服务路由器仅仅转发特定地址的数据包,不传送不支持路由协议的数据包传送和未知目标网络数据包的传送,从而可以防止广播风暴。

交换机一般用于LAN-WAN的连接,交换机归于网桥,是数据链路层的设备,有些交换机也可实现第三层的交换。

路由器用于WAN-WAN之间的连接,可以解决异性网络之间转发分组,作用于网络层。

他们只是从一条线路上接受输入分组,然后向另一条线路转发。

这两条线路可能分属于不同的网络,并采用不同协议。

相比较而言,路由器的功能较交换机要强大,但速度相对也慢,价格昂贵,第三层交换机既有交换机线速转发报文能力,又有路由器良好的控制功能,因此得以广泛应用。

=================================================ATM与IP一、ATM网ATM是异步转移模式的英文缩写。

ITU对ATM的定义是:

ATM是一种转移模式。

在这种转移模式中,信息被组织成“信元”,来自某用户信息的各个信元不需要周期性地出现。

从这个意义上来说,这种转移模式是异步的。

这里,“转移模式”是指网络中所采用的复用、交换、传输技术,即信息从一地“转移”到另一地所用的传递方式。

“异步”是指ATM统计复用的性质。

所以,ATM就是一种在网络中以信元为单位进行统计复用和交换、传输的技术。

信元实际上就是具有固定长度的分组,信元长度为53个字节,其中5个字节是信头,48个字节是信息段,或称净荷。

信头包含表示信元去向的逻辑地址、优先等级等控制信息。

信息段装载来自不同用户、不同业务的信息。

任何业务的信息都经过切割封装成统一格式信元。

ATM采用异步时分复方式(即统计复用),将来自不同信息源的信元汇集到一起,在缓冲器内排队,队列中的信元根据到达的先后按优先等级逐个输出到传输线路上,形成首尾相接的信元流。

具有同样标志的信元在传输线上并不对应着某个固定的时隙,也不是按周期出现的。

异步时分复用使ATM具有很大的灵活性,任何业务都按实际信息量来占用资源,使网络资源得到最大限度的利用。

此外,不论业务源的性质有多么不同(如速率高低、突发性大小、质量和实时性要求如何),网络都按同样的模式来处理,真正做到完全的业务综合。

为了提高处理速度、保证质量、降低时延和信元丢失率,ATM以面向连接的方式工作。

通信开始时先建立虚电路,并将虚电路标志写入信头(即前面说的地址信息),网络根据虚电路标志将信元送往目的地。

虚电路是可以拆除释放的。

在ATM网络的节点上完成的只是虚电路的交换。

为了简化网络的控制,ATM将差错控制和流量控制交给终端去做,不需逐段链路的差错控制和流量控制。

因此,ATM兼顾了分组交换方式统计复用、灵活高效和电路交换方式传输时延小、实时性好的优点。

为了保证服务质量、更好地支持各种业务,ATM在流量管理、拥塞控制、业务分类与结构、支持话音业务、交换式虚电路、反复用技术等方面开展了大量研究工作和取得了许多成果。

二、IP网IP网是基于TCP/IP协议(传输控制协议/互联网协议)的分组网。

严格说它并非新技术。

其概念早在1973年就由美国斯坦福大学提出,1980年左右研制成功,1983年全部取代ARPA网原来采用的网络控制协议NCP,1986年应用于美国国家科学基金会的NSFnet。

TCP/IP是互联网的基础协议,它规范了数据在网上打包、寻址、选路的标准方法。

协议简单灵活,使网络资源得到充分利用,代表了网络无连接化和全球寻址的大趋势。

TCP/IP协议框架中的IP层对应于OSI参考模型中的网络层,完成路由选择和分组转发功能。

TCP对应于OSI参考模型中的传送层,完成端到端之间的数据收妥确认与差错纠正等。

IP协议实质上是一种不需要预先建立连接,而直接依赖于IP分组报头信息决定分组转发路径的数据协议。

从技术上讲,它具有以下几大特点:

一是分布式结构;

二是端到端原则,所有增值功能都在网络之外由终端完成;

三是IP网可以建立在任何传输通道上,可以保证异种网络的互通(即IPoverEverything)四是具有统一的寻址体系,;

网络可扩展性强。

具体讲IP网是一个路由器加专线的存储转发型网络,路由器所承载的是以无连接模式传送的不定长分组。

随着用户终端性能的提升和要求的增加,对路由器的要求越来越高,路由器的性能和吞吐量大大提高。

近年来,IP网为了实现IPovereverything和everythingonIP在组网、保证服务质量、协议开发等方面开展了大量研究工作。

overeverything和everythingonIPIP的实质也就是让IP成为网络层的共同语言。

IP数据报TCP/IP协议定义了一个在因特网上传输的包,称为IP数据报(IPDatagram)。

这是一个与硬件无关的虚拟包,由首部和数据两部分组成,其格式如图所示。

首部的前一部分是固定长度,共20字节,是所有IP数据报必须具有的。

在首部的固定部分的后面是一些可选字段,其长度是可变的。

首部中的源地址和目的地址都是IP协议地址。

三、ATM网与IP网的异同ATM网与IP网的相同点可以说只有一个,那就是均为分组交换技术。

但它们的不同点有很多,其中最要害的不同点恐怕是面向连接和面向无连接。

某种程度上,可以比作铁路和公路之分。

铁路是面向连接的,例如北京到广州,只要铁路信号往沿路各站一送,道岔一合(类似交换的概念),火车就可以从北京直达广州,一路畅通,保证运输质量。

而公路则不然,卡车从北京到广州一路要经过许多岔路口,在每个岔路口都要进行选路,遇见道路拥塞时还要考虑如何绕道走,要是拥塞情况较多时就会影响运输,或者时间延误,或者货物受到影响,质量得不到保证。

这就是无连接的情况。

火车的车皮都是固定长度的,要排列好才能发(类似复用的概念),而卡车可长可短,在每个岔路口每辆卡车都按地址单独发出(类似选路转发的概念)。

由于ATM和IP的差异,后来就引起了ATM和IP之争。

===============================================什么是接力切换?

切换(handover)是指在移动通信的过程中,在保证通信不间断的前提下,把通信的信道从一个无线信道转换到另一个无线信道的这种功能。

这是移动通信系统不可缺少的重要功能。

用户在通话过程中,从一个基站覆盖区移动到另一个基站覆盖区时,或由于受到外界的干扰或其他原因使通信质量下降时,使用中的话音信道就会自动发出一个请求转换信道的信号,通知移动通信业务交换中心,请求转换到另一个覆盖区基站的信道上去,或是转换到另一条接收质量较好的信道上,以保证正常的通信。

信道切换的方式可分为硬切换和软切换两种。

硬切换是在不同频率的基站或覆盖小区之间的切换。

这种切换的过程是移动台(手机)先暂时断开通话,在与原基站联系的信道上,传送切换的信令,移动台自动向新的频率调谐,与新的基站接上联系,建立新的信道,从而完成切换的过程。

简单来说就是“先断开、后切换”,切换的过程中约有1/5秒时间的短暂中断。

这是硬切换的特点。

在FDMA和TDMA系统中,所有的切换都是硬切换。

当切换发生时,手机总是先释放原基站的信道,然后才能获得新基站分配的信道,是一个"

释放-建立"

的过程,切换过程发生在两个基站过度区域或扇区之间,两个基站或扇区是一种竞争的关系。

如果在一定区域里两基站信号强度剧烈变化,手机就会在两个基站间来回切换,产生所谓的"

乒乓效应"

这样一方面给交换系统增加了负担,另一方面也增加了掉话的可能性。

现在我们广泛使用的“全球通(GSM)”系统就是采用这种硬切换的方式。

因为原基站和移动到的新基站的电波频率不同,移动台在与原基站的联系信道切断后,往往不能马上建立新基站的新信道,这时就出现一个短暂的通话中断时间。

在“全球通”系统,这个时间大约是200毫秒。

它对通话质量有点影响。

软切换是发生在同一频率的两个不同基站之间的切换。

在码分多址(CDMA)移动通信系统中,采用的就是这种软切换方式。

当一部手机处于切换状态下同时将会有两个甚至更多的基站对它进行监测,系统中的基站控制器将逐帧比较来自各个基站的有关这部手机的信号质量报告,并选用最好的一帧。

可见CDMA的切换是一个"

建立-比较-释放"

的过程,我们称这种切换为软切换,以区别与FDMA、TDMA中的切换。

软切换可以是同一基站控制器下的不同基站或不同基站控制器下不同基站之间发生的切换。

所谓软切换,就是在移动台进入切换过程时,与原基站和新基站都有信道保持着联系,一直到移动台进入新基站覆盖区并测出与新基站之间的传输质量已经达到指标要求时,才把与原基站之间的联系信道切断。

简单地说,软切换的特点是“先切换、后断开”。

这种切换方式是在与新基站建立联系信道后,才断开与原基站的联系信道,因此在切换过程中没有中断的问题,对通信质量没有影响。

由于软切换是在频率相同的基站之间进行的,因此当移动台移动到多个基站覆盖区交界处时,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2