GARCH模型与应用简介(免费)Word文档下载推荐.doc

上传人:wj 文档编号:4048922 上传时间:2023-05-02 格式:DOC 页数:51 大小:194.50KB
下载 相关 举报
GARCH模型与应用简介(免费)Word文档下载推荐.doc_第1页
第1页 / 共51页
GARCH模型与应用简介(免费)Word文档下载推荐.doc_第2页
第2页 / 共51页
GARCH模型与应用简介(免费)Word文档下载推荐.doc_第3页
第3页 / 共51页
GARCH模型与应用简介(免费)Word文档下载推荐.doc_第4页
第4页 / 共51页
GARCH模型与应用简介(免费)Word文档下载推荐.doc_第5页
第5页 / 共51页
GARCH模型与应用简介(免费)Word文档下载推荐.doc_第6页
第6页 / 共51页
GARCH模型与应用简介(免费)Word文档下载推荐.doc_第7页
第7页 / 共51页
GARCH模型与应用简介(免费)Word文档下载推荐.doc_第8页
第8页 / 共51页
GARCH模型与应用简介(免费)Word文档下载推荐.doc_第9页
第9页 / 共51页
GARCH模型与应用简介(免费)Word文档下载推荐.doc_第10页
第10页 / 共51页
GARCH模型与应用简介(免费)Word文档下载推荐.doc_第11页
第11页 / 共51页
GARCH模型与应用简介(免费)Word文档下载推荐.doc_第12页
第12页 / 共51页
GARCH模型与应用简介(免费)Word文档下载推荐.doc_第13页
第13页 / 共51页
GARCH模型与应用简介(免费)Word文档下载推荐.doc_第14页
第14页 / 共51页
GARCH模型与应用简介(免费)Word文档下载推荐.doc_第15页
第15页 / 共51页
GARCH模型与应用简介(免费)Word文档下载推荐.doc_第16页
第16页 / 共51页
GARCH模型与应用简介(免费)Word文档下载推荐.doc_第17页
第17页 / 共51页
GARCH模型与应用简介(免费)Word文档下载推荐.doc_第18页
第18页 / 共51页
GARCH模型与应用简介(免费)Word文档下载推荐.doc_第19页
第19页 / 共51页
GARCH模型与应用简介(免费)Word文档下载推荐.doc_第20页
第20页 / 共51页
亲,该文档总共51页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

GARCH模型与应用简介(免费)Word文档下载推荐.doc

《GARCH模型与应用简介(免费)Word文档下载推荐.doc》由会员分享,可在线阅读,更多相关《GARCH模型与应用简介(免费)Word文档下载推荐.doc(51页珍藏版)》请在冰点文库上搜索。

GARCH模型与应用简介(免费)Word文档下载推荐.doc

Eet=Eyt-Ej(yt-1,yt-2,…)

=Eyt-Eyt=0,(0-均值性)(0.4)

Eet2=E[yt-j(yt-1,yt-2,…)]2

=E{(yt-m)-[j(yt-1,yt-2,…)-m]}2(中心化)

=E(yt-m)2+E[j(yt-1,yt-2,…)-m]2

-2E(yt-m)[j(yt-1,yt-2,…)-m]

=g0+Var{j(yt-1,yt-2,…)}

-2EE{(yt-m)[j(yt-1,yt-2,…)-m]½

yt-1,yt-2,…}

(根据Ex=E{E[x½

yt-1,yt-2,…]})

-2E{[j(yt-1,yt-2,…)-m]E[(yt-m)½

yt-1,yt-2,…]}

(再用E[x´

y(yt-1,yt-2,…)½

yt-1,yt-2,…]

=y(yt-1,yt-2,…)E[x½

yt-1,yt-2,…];

并取x=(yt-m),y(yt-1,yt-2,…)=[j(yt-1,yt-2,…)-m];

由(0.1)(0.2)可得)

=g0+Var{j(yt-1,yt-2,…)}-2E[j(yt-1,yt-2,…)-m]2

=g0-Var{j(yt-1,yt-2,…)}.(0.5)

即有:

g0=Var(yt)=Var(j(yt-1,yt-2,…))+Var(et).(0.6)

此式表明,yt的方差(=g0)可表示为:

回归函数的方差(Var(j(yt-1,yt-2,…)),与残差的方差(Var(et))之和.

下边讨论et的条件均值与条件方差.

为了符号简便,以下记Ft-1={yt-1,yt-2,…}.

首先考虑et的条件均值:

E(et½

Ft-1)=E{yt-j(yt-1,yt-2,…)½

Ft-1}

=E(yt½

Ft-1)-E{j(yt-1,yt-2,…)½

=j(yt-1,yt-2,…)-j(yt-1,yt-2,…)

=0.(0.7)

再看条件方差:

Var(et½

Ft-1)=E{[et-E(et½

Ft-1)]2½

=E{et2½

Ft-1}(用(0.7)式)

º

S2(yt-1,yt-2,…).(0.8)

此处S2(yt-1,yt-2,…)为条件方差函数.注意,et的条件均值是零,条件方差是非负的函数S2(yt-1,yt-2,…),它不一定是常数!

依(0.3)式,平稳随机序列{yt}总有如下表达式:

yt=j(yt-1,yt-2,…)+et,(0.9)

其中j(yt-1,yt-2,…)被称为自回归函数,不一定是线性的.{et}可称为新息序列,与线性模型的新息序列不同,除非{yt}是正态序列.顺便指出,满足(0.4)式的{et}为鞅差序列,因为对它的求和是离散的鞅序列.由于{yt}是严平稳随机序列,且E|yt|<

上述推演是严格的,从而{et}是严平稳的鞅差序列.当{yt}有遍历性时,它也是遍历的.此处所涉及的抽象概念可不必深究.

现在将et标准化,即令

etº

et/S(yt-1,yt-2,…).

则有,

Ft-1)=E[et/S(yt-1,yt-2,…)½

Ft-1]

={1/S(yt-1,yt-2,…)}E[et½

Ft-1]

=0.(依(0.7)式)(0.10)

以及

E(et2½

Ft-1)=E[et2/S2(yt-1,yt-2,…)½

={1/S2(yt-1,yt-2,…)}E[et2½

Ft-1](用(0.8))

={S2(yt-1,yt-2,…)}/{S2(yt-1,yt-2,…)}

=1.(a.s.)(0.11)

由此可见,{et}也是平稳鞅差序列,与{et}相比,{et}的条件方差为常数1.于是(0.9)式可写为:

yt=j(yt-1,yt-2,…)+S(yt-1,yt-2,…)et,(0.12)

此式可称为条件异方差自回归模型,所谓条件异方差就是指:

条件方差S2(yt-1,yt-2,…)不为常数.请注意,条件异方差自回归模型与下文中的自回归条件异方差模型是不同的概念!

*还有一点很重要,如果(0.9)模型具有可逆性,那么,

Ft-1)=Var(et½

yt-1,yt-2,…)

=Var(et½

et-1,et-2,…)

º

h(et-1,et-2,…).(0.13)

因此,模型(0.12)式又可些成

yt=j(yt-1,yt-2,…)+h1/2(et-1,et-2,…)et.(0.14)

请注意,模型(0.12)(0.14)式是

普遍适用(或称万用)的模型!

但是,为便于研究建模理论,在(0.12)式中还附加假定:

et与{yt-1,yt-2,…}相互独立!

此假定是实质性的,人为的.

它对{yt}的概率分布有实质性的限制.

还须指出:

若在(0.9)式中直接假定et与{yt-1,yt-2,…}独立,此假定除了上述的人为性含义外,还增多了如下假定:

Var(et2½

yt-1,yt-2,…)=Var(et2)=常数.(0.15)

这里用了条件期望的一条性质,即当X与Y独立时,

E(X½

Y)=EX.

大家要问,为什么加这些人为的假定呢?

让我们回顾一下这些假定演变的历程吧.

在文献中(0.9)式et先后被假定为:

“i.i.d.且N(0,σ2)”,(1943--)

“i.i.d.且0-均值-方差有穷”,(1960--)

“鞅差序列,且条件方差S2(...)=常数”,(1970--)

“et=S(yt-1,yt-2,…)et,但{et}为i.i.d.N(0,σ2)序列,

而且S(yt-1,yt-2,…)为有限参模型”,(1982--)

“et=S(yt-1,yt-2,…)et,但{et}为i.i.d.序列

而且S(yt-1,yt-2,…)为有限参模型”。

(2000--)

究其根源,主要是受时间序列统计理论知识的限制.

以上专门讨论了{et}的定义,性质,和人为限制的历程.

但是,这里也顺便提一下自回归函数j(yt-1,yt-2,…)的发展史,大致如下(不细论):

线性→非线性参数→半参数→非参数。

在以上的讨论中,使用记号j(yt-1,yt-2,…),是为了突出普适性.在文献中和实际应用中,所考虑的j(yt-1,yt-2,…)的形式很简单.半个多世纪来,虽说有了很大的改进,但是,与最一般的j(yt-1,yt-2,…)还有很大差距.

类似的讨论也适用S(yt-1,yt-2,…).也是为了突出普适性,才引入了记号S(yt-1,yt-2,…)和模型(0.12)(0.14).在文献中和实际应用中,直到近二十来年才考虑了不为常数的S(yt-1,yt-2,…)的简单情况---ARCH模型.近几年来,也在向着半参数,非参数方面发展.但是,与最一般的S(yt-1,yt-2,…)也还相差甚远.

1.ARCH与GARCH模型

1.1.概述

在条件异方差模型问世以前,时间序列分析主要讨论自回归结构,或者说,主要讨论j(yt-1,yt-2,…)的有关内容.当条件异方差模型问世后,在时间序列分析中,特别是建模分析中,就包含了两个内容,一个与j(yt-1,yt-2,…)有关;

另一个与S(yt-1,yt-2,…)有关.如何统计分析它们,是摆在我们面前的主要问题.对此问题,通常作法是:

分两步完成,先按平稳序列建模方法,对j(yt-1,yt-2,…)建立适当的模型,比如AR模型;

由此获得弥合的残差序列,把它当做新息序列{et}的样本值,再对它进行条件异方差建模分析.分两步完成有方便之处,其一,做第一步时,由于{et}是鞅差序列,其建模有理论根据.其二,在介绍条件异方差建模时,可以只讨论j(yt-1,yt-2,…)=0的情况.这并无损失,还便于理解条件异方差概念.其实,还有一言,在金融统计中,专门考虑条件异方差建模问题,也有一定的实际背景.

综上所说,我们将专门讨论如下的鞅差平稳序列,即,

j(yt-1,yt-2,…)=0.(1.1)

Var(yt½

S2(yt-1,yt-2,…)>

0.(1.2)

换句话说,考虑如下的(0.9)模型

yt=et,(1.3)

它的标准化的模型(0.12)为

yt=S(yt-1,yt-2,…)et.(1.4)

请注意,这一模型几乎含盖了所有的条件异方差模型.我们不可能泛泛地讨论它.再请回看对鞅差序列{et}的限制的历程,以下我们要讲的恰好是:

而且S(yt-1,yt-2,…)为有限参模型’’,(1982--).

再新的内容,我们也将提到.至此,大家完全明白我们将要讨论什么样的序列.

为说明该序列的某些特征,先看一看序列{et}的自协方差函数序列:

ge(k)=Eet+ket=E[E(et+ket½

et+k-1,et+k-2,…)]

=E[etE(et+k½

=E{et´

0}=0,k³

1.

可见,平稳鞅差序列也是白噪声.根据自协方差序列做平稳序列的建模和谱分析时,除了判断j(yt-1,yt-2,…)=0外,几乎无话可说.换句话说,相关性分析和谱分析不能对(1.4)式的序列作出更深刻的分析.为了进一步获得它的深入的结构特征,必须引入新的概念和新的方法.

1.2.ARCH(p)模型.

(ARCH---AutoregressiveConditionalHeteroscedasticity)

在金融界,大量的数据序列呈现不可预报性,相当于前

面的(0.9)或(0.12)式中的j(yt-1,yt-2,…)=0,于是有兴趣研究(1.4)模型.Engle(1982)首先提出并使用了如下的有限参数模型:

yt=S(yt-1,yt-2,…)etº

ht1/2et,(1.5)

ht=a0+a1yt-12+a2yt-22+…+apyt-p2,(1.6)

a0>

0,ai³

0,i=1,2,…,p.

其中{et}为i.i.d.的序列,et~N(0,1),且et与{yt-1,yt-2,…}独立,为了简化记号,记ht=S2(yt-1,yt-2,…).

此模型被称为自回归条件异方差模型,简记ARCH(p),其中p表示模型的阶数.

很明显,此模型只是普遍适用的(1.4)式模型的子类,因为,在ARCH模型中对模型(1.4)添加了很多的人为限制.

为了增进对ARCH模型的了解,我们将作几点明,以代替严格的推理论述.

其一,限定{et}为i.i.d.序列!

这是很强的限制,这是由于现有理论的基楚所限.

其二,限定条件方差有(1.6)式的简单形式,即

ht=S2(yt-1,yt-2,…)=a0+a1yt-12+a2yt-22+…+apyt-p2,

是为了统计分析方便.

其三,限定et服从正态分布,是为了求极大似然估计方便.限制et~N(0,1),而不用et~N(0,s2),是因为{et}满足标准化的模型(0.11)式.

其四,限制a0>

0,i=1,2,…,p,是为了保证条件方差函数ht=S2(yt-1,yt-2,…)>

0.限制a0>

0,而不是a0³

0,这是为了保证模型(1.5)(1.6)有平稳解,否则,当a0=0时它没有平稳解!

这可从以下简单例子看出.考查如下ARCH

(1)模型:

ht=a1yt-12,

将它代入(1.5)式得

yt=ht1/2et=(a1yt-12)1/2et,

将它两边平方得

yt2=a1yt-12et2,

将它两边取对数得

log(yt2)=log(a1)+log(yt-12)+log(et2),(1.7)

记xt=log(yt2),c=log(a1),ht=log(et2)(仍为i.i.d.序列),上式为

xt=c+xt-1+ht,

这不是熟知的一元AR

(1)模型吗?

而且不满足平稳性条件!

所以,没有平稳解.从而模型(1.5)也没有平稳解.

其五,为使ARCH模型有平稳解,对系数ai(i=1,2,…,p)

还要加限制.较早的限制(也是较强)是

a1+a2+…+ap<

1.(1.8)

在此条件下,不仅有平稳解,还有有穷二阶矩.后来,也有人放宽条件,只保证有平稳解,不保证有有穷二阶矩.所有这些结果的推理,都要用到非线性时间序列分析的新成果.

其六,Engle(1982)首次先提出ARCH模型时,使用了如下叙述:

ytú

yt-1,yt-2,…,y1~N(0,ht),(1.5)’

ht=a0+a1yt-12+a2yt-22+…+apyt-p2,

a0>

易见,(1.5)’式与(1.5)式是等价的.

其七,ARCH模型有不同的变形形式.仿(1.7)式的做法,即将(1.5)式两边平方,再将(1.6)式代入其中可得

yt2=htet2=(a0+a1yt-12+a2yt-22+…+apyt-p2)et2

=(a0+a1yt-12+a2yt-22+…+apyt-p2)(1+et2-1)

=a0+a1yt-12+a2yt-22+…+apyt-p2

+(et2-1)(a0+a1yt-12+a2yt-22+…+apyt-p2)

=a0+a1yt-12+a2yt-22+…+apyt-p2+ht(et2-1)

=a0+a1yt-12+a2yt-22+…+apyt-p2+wt,(1.9)

对序列{yt2}而言,此式很像线性AR(p)模型,其中wt=ht(et2-1)是一个平稳的鞅差序列,因为

E{wt|yt-1,yt-2,…}=

=E{ht(et2-1)|yt-1,yt-2,…}

=E{htet2|yt-1,yt-2,…}-E{ht|yt-1,yt-2,…}

=htE{et2|yt-1,yt-2,…}-E{ht|yt-1,yt-2,…}(依(1.6))

=ht-ht=0.(1.10)

用(1.9)式和线性AR(p)模型的求解方法,可得{yt2}的平稳解.但是,从原理上说,得到了{yt2}的解,还不能说就得到了原序列{yt}的解.好在当我们只关心yt的条件方差时,有了{yt2}的解也足够用了.(1.9)式的变形方式是严格的,可放心地使用它.所谓使用它,就是将原数据平方后得到y12,y22,…,yT2,对它们建立AR(p)模型,便得到参数a0,a1,…,ap的一种估计.

如果对yt2=htet2两边取对数可得

log(yt2)=log(ht)+log(et2)

=log(a0+a1yt-12+a2yt-22+…+apyt-p2)+log(et2)

记x(t)=log(yt2),c=Elog(et2),ht=log(et2)-c,于是上式可写成

x(t)=c+log(a0+a1ex(t-1)+a2ex(t-2)+…+apex(t-p))+ht.

于是又得到ARCH模型的另一种变形.此式是关于序列{x(t)}的非线性自回归模型,注意,上式中的序列{ht}是i.i.d.的.此外,ARCH模型还有别的表示方法,不再一一介绍了.

其八,根据数据y1,y2,…,yT,要作自回归条件异方差模型的统计分析,包含两项内容,首先是用假设检验方法,判别这些数据是否有条件异方差条件性,即,S(yt-1,yt-2,…)=常数?

如果是否定回答,第二项内容就是对ARCH模型未知参数的估计.在第2节中,我们将介绍参数的估计方法,在第3节中,介绍检验方法.

1.3.GARCH(GeneralizedARCH)模型:

在Engle(1982)提出ARCH模型后,受到应用者的关注,特别是金融界.稍后几年,也被时间序列分析理论研究所重视.从前面对新息序列{et}限制条件的放宽过程可见,提出ARCH模型,无疑是对时间序列分析理论和应用研究有开拓性的意义.在对ARCH模型的理论研究和应用中,人们自然会发问:

在(1.6)式中,yt的条件方差

S2(yt-1,yt-2,…)º

ht=a0+a1yt-12+a2yt-22+…+apyt-p2,

只依赖于p个历史值,能否考虑依赖全部历史值的情况?

Bollerslev(1986)给出了回答,他提出了如下的更广的模型,即GARCH模型:

yt=S(yt-1,yt-2,…)etº

ht1/2et,(1.11)

ht=a0+a1yt-12+a2yt-22+…+apyt-p2

+b1ht-1+…+bqht-q,(1.12)

0,ai³

0,i=1,2,…,p;

bj³

0,j=1,2,…,q.(1.13)

其中{et}为i.i.d.的N(0,1)分布,且et与{yt-1,yt-2,…}独立.

对此GARCH模型作如下说明:

其一,利用(1.12)式反复迭代可得知,ht=S2(yt-1,yt-2,…)确实依赖序列的全部历史值,但是,ht仅依赖有限个参数.

其二,在1997年诺贝尔经济学奖,被两位研究期权定价理论的Black-Scholes方程的学者获得.从理论上人们发现,Black-Scholes方程的解是连续时间变化的随机过程,对它进行等间隔离散化采样,所得到的序列,恰好满足GARCH模型.于是,GARCH模型更被认可,而且,金融界特别偏爱GARCH模型.

其三,如前所述,(1.13)式的条件a0>

0,仍不能放宽为

a0³

0.而且,(1.13)式中的条件ai³

0,i=1,2,…,p,还应附加一个限制:

a1+a2+…+ap>

0,否则如果全部ai=0(i=1,2,…,p)将导致(1.12)式的ht为常数(仍用迭代法可证明).这一点未在文献中指出,一个潜在原因是:

应用者默认p³

1,且ap>

0.

其四,与对ARCH模型的说明中的其五很类似,为使GARCH模型有平稳解,对系数ai(i=1,2,…,p)和bj³

0,j=1,2,…,q.还要加限制.较早的限制(也是较强)是

a1+…+ap+b1+…+bq<

1.(1.14)

在此条件下,不仅有平稳解,还有有穷二阶矩.其余的叙述与ARCH情况相同,从略.

其五,统计问题.与对ARCH模型的说明中的其七很类似.但是,它比ARCH模型要复杂些,具体如下:

yt2=htet2=ht(et2-1+1)=ht+ht(et2-1)

=a0+a1yt-12+a2yt-22+…+apyt-p2+b1ht-1+…+bqht-q+wt

=a0+a1yt-12+a2yt-22+…+apyt-p2

+b1ht-1(et-12-et-12+1)+…+bqht-q(et-12-et-q2+1)+wt

=a0+a1yt-12+a2yt-22+…+apyt-p2

+b1ht-1et-12+…+bqht-qet-q2

-b1ht-1(et-12-1)-…-bqht-q(et-q2-1)+wt

+b1yt-12+…+bqyt-q2-b1wt-1-…-bqwt-q+wt

=a0+(a1+b1)yt-12+(a2+b2)yt-22+…+(am+bm)yt-p2

-b1wt-1-…-bqwt-q+wt,(1.15)

其中m=max{p,q},而且,当k>

p时ak=0;

当k>

q时bk=0,wt=ht(et2–1).如前所述{wt}是平稳鞅差序列,所以,以上表达式说明,{ht}是由{wt}驱动的平稳ARMA序列.以上模型不仅表达了GARCH模型的结构特性,而且,依此可借助于平稳ARMA序列建模方

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2