Geometric Optimization of Radiant Enclosures Containing Specular Surfaces.docx

上传人:b****3 文档编号:4270100 上传时间:2023-05-06 格式:DOCX 页数:16 大小:20.39KB
下载 相关 举报
Geometric Optimization of Radiant Enclosures Containing Specular Surfaces.docx_第1页
第1页 / 共16页
Geometric Optimization of Radiant Enclosures Containing Specular Surfaces.docx_第2页
第2页 / 共16页
Geometric Optimization of Radiant Enclosures Containing Specular Surfaces.docx_第3页
第3页 / 共16页
Geometric Optimization of Radiant Enclosures Containing Specular Surfaces.docx_第4页
第4页 / 共16页
Geometric Optimization of Radiant Enclosures Containing Specular Surfaces.docx_第5页
第5页 / 共16页
Geometric Optimization of Radiant Enclosures Containing Specular Surfaces.docx_第6页
第6页 / 共16页
Geometric Optimization of Radiant Enclosures Containing Specular Surfaces.docx_第7页
第7页 / 共16页
Geometric Optimization of Radiant Enclosures Containing Specular Surfaces.docx_第8页
第8页 / 共16页
Geometric Optimization of Radiant Enclosures Containing Specular Surfaces.docx_第9页
第9页 / 共16页
Geometric Optimization of Radiant Enclosures Containing Specular Surfaces.docx_第10页
第10页 / 共16页
Geometric Optimization of Radiant Enclosures Containing Specular Surfaces.docx_第11页
第11页 / 共16页
Geometric Optimization of Radiant Enclosures Containing Specular Surfaces.docx_第12页
第12页 / 共16页
Geometric Optimization of Radiant Enclosures Containing Specular Surfaces.docx_第13页
第13页 / 共16页
Geometric Optimization of Radiant Enclosures Containing Specular Surfaces.docx_第14页
第14页 / 共16页
Geometric Optimization of Radiant Enclosures Containing Specular Surfaces.docx_第15页
第15页 / 共16页
Geometric Optimization of Radiant Enclosures Containing Specular Surfaces.docx_第16页
第16页 / 共16页
亲,该文档总共16页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

Geometric Optimization of Radiant Enclosures Containing Specular Surfaces.docx

《Geometric Optimization of Radiant Enclosures Containing Specular Surfaces.docx》由会员分享,可在线阅读,更多相关《Geometric Optimization of Radiant Enclosures Containing Specular Surfaces.docx(16页珍藏版)》请在冰点文库上搜索。

Geometric Optimization of Radiant Enclosures Containing Specular Surfaces.docx

GeometricOptimizationofRadiantEnclosuresContainingSpecularSurfaces

GeometricOptimizationofRadiantEnclosuresContainingSpecularSurfaces

Thispaperpresentsanoptimizationmethodologyfordesigningradiantenclosurescon-

tainingspecularly-reflectingsurfaces.Theoptimizationprocessworksbymakingintelli-

gentperturbationstotheenclosuregeometryateachdesigniterationusingspecialized

numericalalgorithms.Thisprocedurerequiresfarlesstimethantheforward‘‘trial-and-

error’’designmethodology,andthefinalsolutionisnearoptimal.Theradiantenclosure

isanalyzedusingaMonteCarlotechniquebasedonexchangefactors,andthedesignis

optimizedusingtheKiefer-Wolfowitzmethod.Theoptimizationdesignmethodologyis

demonstratedbysolvingtwoindustrially-relevantdesignproblemsinvolvingtwo-

dimensionalenclosuresthatcontainspecularsurfaces.DOI:

10.1115/1.1599369

Keywords:

Geometry,HeatTransfer,MonteCarlo,Radiation

Introduction

Thedesignofradiantenclosuregeometryisachallengingprob-

lemoftenencounteredinthefieldofthermalengineering.Enclo-

suregeometryisanimportantconsiderationinalmosteveryde-

signprobleminvolvingradiantenclosures,andinparticularthose

thatcontainspecularly-reflectingsurfaces.Commonexamplesin-

cludesolarconcentratingcollectorsandlightboxesforillumina-

tionapplications.

Traditionally,theenclosuregeometryisdesignedusingafor-

ward‘‘trial-and-error’’methodology.First,thedesignerposesa

candidateenclosuregeometryandthenevaluatesitbyperforming

ananalysis.Ifthisenclosuredesigndoesnotsatisfytheproblem

requirements,thedesignermodifiesthedesignaccordingtohisor

herexperienceandintuitionandrepeatstheanalysis.Thisprocess

continuesuntilasatisfactorysolutiontothedesignproblemis

identified.Usually,thisrequiresmanyiterations,andconsequently

asubstantialamountofdesigntime.Furthermore,whilethefinal

solutionmaybesatisfactory,itisrarelyoptimal.

Recently,optimizationtechniqueshavebeenadaptedtodesign

radiantenclosures.Theprocedureisasfollows:

first,anobjective

or‘‘cost’’function,F(),isdefinedsothattheminimumofthe

objectivefunctioncorrespondstotheidealdesignoutcome.The

objectivefunctiondependsonasetofdesignparameterscon-

tainedinthevectorthatcontroltheenclosureconfiguration.

Specializednumericalalgorithmsarethenemployedtominimize

theobjectivefunctionthroughsuccessiveiteration.Thetotalnum-

berofiterationsrequiredbythedesignprocessislimitedbymak-

ingintelligentchangestothedesignparametersateachstep,

basedonthelocalobjectivefunctioncurvature.Consequently,far

feweriterationsarerequiredtosolvethedesignproblemcom-

paredwiththeforwardmethodology,andthefinalsolutionis

usuallynearoptimal.

Enclosuregeometryisoneofthemostimportantconsiderations

whendesigningenclosuresthatcontainspecularsurfaces;accord-

ingly,mostliteraturedealingwithenclosuregeometrydesignhas

focusedonthisclassofproblem.Non-imagingopticstechniques

areamongthemostwidelyusedmethodsforoptimizingthege-

ometryofenclosurescontainingspecularsurfaces1.Themost

commonofthesetechniquesistheedge-raymethod,whichusesa

complexmathematicalprocedurebasedonanalyticalgeometry

andcalculustodeterminetheoptimalshapeofreflectorsurfaces,

andisoftenappliedtodesignconcentratorsthathavethehighest-

possibleradiantheatfluxconcentrationratiosbetweenentrance

andexitapertures.Gu¨ven2alsopresentedasemi-analytical

methodfordesigningcollectorgeometries.Inthismethod,the

optimalcollectorshapeisfoundbyderivingananalyticalexpres-

sionfortheinterceptfactordefinedasthefractionofthereflected

radiationthatreachesthereceiver,whichisthenmaximizedby

takingthederivativeswithrespecttotwogeometricparameters

andsettingtheseequaltozero.Whilethesetechniquesarevery

powerfuldesigntools,theycanonlybeusedtotreatanarrow

classofenclosuregeometryanddonotaccountforsurfacesprop-

ertiesthathavebothdiffuseandspecularcomponents.Moreover,

thedesignermustpossessspecializedmathematicalknowledgein

ordertocarryouttheseanalyses.

Numericalsimulationhasbeenextensivelyusedtodesignradi-

antenclosurescontainingspecularsurfaces.Mostsimulationsare

basedonaMonteCarloray-tracingmethod,whichcantreatvery

complexproblemsandisalsoverystraightforwardtoimplement.

Ryanetal.3usedaMonteCarlotechniquetoanalyzeacylin-

dricalsolarcollector,anddrewgeneralconclusionsaboutthecol-

lectorconfigurationbasedonaseriesofunivariateparametric

studies.Mushawecketal.4calculatedopticalreflectorshapes

fornon-trackingparabolictroughcollectors.Thereflectorshape

wassetequaltotheidealizededge-raysolution,whichinturnisa

functionoftheupperandloweracceptanceanglesofthereflector.

Theidealcollectorconfigurationwasthenfoundbyplottingthe

averageutilizablepoweroverarectangulardomaindefinedbythe

maximumandminimumvaluesoftheacceptanceangles.Al-

thoughnumericalsimulationtechniquescantreatamoreexten-

sivesetofproblemsthanthosebasedonanalyticalsolutions,both

oftheabovestudiesreliedonprimitiveoptimizationalgorithms

thatrequiredasubstantialamountofdesigntimeandalsore-

strictedthenumberofdesignparametersthatcouldbeconsidered

intheanalysis.

Amoresophisticatedoptimizationapproachisdescribedby

Ashdown5,inwhicharay-tracingtechniqueusedtosimulate

illuminationwithinanenclosureiscoupledwithageneticalgo-

rithmthatsearchesforthegloballyoptimumenclosuregeometry.

Geneticalgorithmsmimicnaturalselectionasitoccursinnature.

Thisclassofalgorithmsgeneratesnewdesignsby‘‘mating’’pairs

ofpreviouslygenerateddesignsandby‘‘mutating’’existingde-

signs.Thedesignsthatperformwellarefavoredinthemating

process,andaftermanygenerations,anear-optimumsolutionis

usuallyfound.

Thispaperpresentsanoptimizationmethodfordeterminingthe

enclosureconfigurationthatproducesadesiredheatfluxandtemperaturedistributionoveraregionoftheenclosuresurface,calledthedesignsurface.Thisclassofproblemiscommonlyencounteredwhentheradiantenclosureispartofaheattreatmentprocess;forexample,thedesignsurfacemayconsistoffoodproductsthatneedtobebakedoracoatedsurfacethatneedstobedriedorcured.Inthismethod,aMonteCarlotechniquebasedonexchangefactorsisusedtocalculatetheboundaryconditionsoverthedesignsurface,whiletheobjectivefunctionisminimizedusingtheKiefer-Wolfowitzmethod,agradient-basedtechniquethat

iswell-suitedforoptimizingstochasticsystemsinwhichanalyticalgradientestimatesarenotavailable.Finally,theprocedureisdemonstratedbyapplyingittodesigntwotwo-dimensionalradiantenclosurescontainingbothdiffuseandspecularlyreflectingsurfaces.

Gradient-BasedOptimization

Optimizationmethodsworkbysolvingthewell-posedforward

orexplicitdesignproblemthroughsuccessiveiteration.Unlike

the‘‘trial-and-error’’designmethodology,whichreliessolelyon

thedesigner’sintuition,theoptimizationmethodologyusesnu-

mericalalgorithmstoadjustthedesignconfigurationateachitera-

tionuntiltheoptimumdesignisidentified.Inthisway,thenum-

berofiterationsandconsequentlythetimerequiredtodesignthe

enclosureisreduced,andthefinalsolutionqualityisusually

muchbetterthanthatobtainedbythetrial-and-errordesign

methodology.

Thefirststepoftheoptimizationprocessistodefineanobjec-

tivefunction,F(),whichquantifiesthe‘‘goodness’’ofapar-

ticulardesignconfiguration,insuchawaythattheminimumof

F()correspondstotheoptimaldesign.Theobjectivefunctionis

dependantonasetofvariablescontainedin,calleddesign

parameters,whichcompletelyspecifythedesignconfiguration.

Thegoal,then,istoidentifythesetofdesignparametersthat

minimizeF(),

F*MinF,Rn.

(1)

Often,itisalsonecessarytoimposedesignconstraintsonof

theform

ci0,i1...m(

2)

ci0,im1...m,

whichdefinethedomainofinn-space,calledthefeasible

region.

ConsidertheradiantenclosuredesignproblemshowninFig.1.

Theobjectiveofthisproblemistoidentifytheenclosuregeom-

etryandheatersettingsthatproduceadesiredheatfluxandtem-

peraturedistributionoverthedesignsurface.Thisisaccomplished

byfirstspecifyingthetemperaturedistributionoverthedesign

surfaceandthenusingtheheatfluxevaluatedatNDSdiscrete

locationsoverthedesignsurfacetodefinetheobjectivefunction,

F1

NDSj1

NDS

qsjqsj

target2,(3)

withthedesignparametersinspecifyingtheheatersettingsand

enclosuregeometry.Theheatfluxdistributionoverthedesign

surfacethatbestmatchesthedesireddistributionisproducedby

thedesignconfigurationcorrespondingto*,whichinturnis

foundbyminimizingtheobjectivefunctiondefinedinEq.3.

Alternatively,theheatfluxdistributioncouldbespecifiedover

thedesignsurfaceandthetemperaturedistributioncouldbeused

todefineF().)Designconstraintscouldalsobeimposedto

limitthesizeoftheenclosure,andtopreventtheheatfluxdistri-

butionovertheheatersurfacefromassumingnegativevalues.

Manydifferentmethodshavebeendevelopedtominimizethe

objectivefunction.Gradient-basedtechniquesarecommonlyem-

ployedifthefeasibleregionisconvexandthedefiningobjective

functionandconstraintsinEqs.1and2arecontinuouslydif-

ferentiable.Thesealgorithmsfind*iteratively;atthekthitera-

tion,asearchdirection,pk,isfirstchosenbasedo

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 调解书

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2