SD卡驱动.docx

上传人:b****3 文档编号:4606647 上传时间:2023-05-07 格式:DOCX 页数:15 大小:509.62KB
下载 相关 举报
SD卡驱动.docx_第1页
第1页 / 共15页
SD卡驱动.docx_第2页
第2页 / 共15页
SD卡驱动.docx_第3页
第3页 / 共15页
SD卡驱动.docx_第4页
第4页 / 共15页
SD卡驱动.docx_第5页
第5页 / 共15页
SD卡驱动.docx_第6页
第6页 / 共15页
SD卡驱动.docx_第7页
第7页 / 共15页
SD卡驱动.docx_第8页
第8页 / 共15页
SD卡驱动.docx_第9页
第9页 / 共15页
SD卡驱动.docx_第10页
第10页 / 共15页
SD卡驱动.docx_第11页
第11页 / 共15页
SD卡驱动.docx_第12页
第12页 / 共15页
SD卡驱动.docx_第13页
第13页 / 共15页
SD卡驱动.docx_第14页
第14页 / 共15页
SD卡驱动.docx_第15页
第15页 / 共15页
亲,该文档总共15页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

SD卡驱动.docx

《SD卡驱动.docx》由会员分享,可在线阅读,更多相关《SD卡驱动.docx(15页珍藏版)》请在冰点文库上搜索。

SD卡驱动.docx

SD卡驱动

sd卡驱动

一.SD/MMC卡介绍

1.1.什么是MMC卡

MMC:

MMC就是MultiMediaCard的缩写,即多媒体卡。

它是一种非易失性存储器件,体积小巧(24mm*32mm*1.4mm),容量大,耗电量低,传输速度快,广泛应用于消费类电子产品中。

1.2.什么是SD卡

SD:

SD卡为SecureDigitalMemoryCard,即安全数码卡。

它在MMC的基础上发展而来,增加了两个主要特色:

SD卡强调数据的安全安全,可以设定所储存的

使用权限,防止数据被他人复制;另外一个特色就是传输速度比2.11版的MMC卡快。

在数据传输和物理规范上,SD卡(24mm*32mm*2.1mm,比MMC卡更厚一点),向前兼容了MMC卡.所有支持SD卡的设备也支持MMC卡。

SD卡和2.11版的MMC卡完全兼容。

1.3.什么是SDIO

SDIO:

SDIO是在SD标准上定义了一种外设接口,它和SD卡规范间的一个重要区别是增加了低速标准。

在SDIO卡只需要SPI和1位SD传输模式。

低速卡的目标应用是以最小的硬件开销支持低速IO能力。

1.4.什么是MCI

MCI:

MCI是MultimediaCardInterface的简称,即多媒体卡接口。

上述的MMC,SD,SDI卡定义的接口都属于MCI接口。

MCI这个术语在驱动程序中经常使用,很多文件,函数名字都包括”mci”.

1.5.MMC/SD/SDIO卡的区别

二.SD/MMC协议与命令

1.SD/MMC卡相关寄存器

SD卡内部有7个寄存器.其中OCR,CID,CSD和SCR寄存器保存卡的配置信息;RCA寄存器保存着通信过程中卡当前暂时分配的地址(只适合SD模式);卡状态(CardStatus)和SD状态(SDStatus)寄存器保存着卡的状态(例如,是否写成功,通信的CRC校验是否正确等),这两个寄存器的内容与通信模式(SD模式或SPI模式)相关.MMC卡没有SCR和SDStatus寄存器.如下表1所示:

表1SD卡内部7个寄存器

1.1.OCR寄存器

OCR寄存器保存着SD/MMC卡的供电电允许范围.如下表2所示:

如果OCR寄存器的某位为1,表示卡支持该位对应的电压。

最后一位表示卡上电后的状态(是否处于”忙状态”),如果该位为0,表示忙,如果为1,表示处于空闲状态(MMC/SD协议P60)。

表2OCR寄存器

1.2.CID寄存器

CID为一个16个字节的寄存器,该寄存器包含一个独特的卡标识号。

如下表3所示:

表3CID寄存器

1.3.CSD寄存器

CSD寄存器(卡特殊数据寄存器)包含访问卡存储时需要的相关信息。

如下表4所示:

表4CSD寄存器

1.4.SCR寄存器

SCR寄存器提供SD卡的特殊特性信息,其大小为64位。

该寄存器由厂商编程,主机不能对它进行编程。

MMC卡没有SCR。

如下表5所示:

表5SCR寄存器

1.5.RCA寄存器

该16位卡地址寄存器保存了在卡识别过程中卡发布的器件地址。

该地址用于在卡识别后主机利用该地址与卡进行通信。

该寄存器只有在SD总线模式下才有效。

二.SD卡的引脚图

三.SD卡的命令

3.1.SD卡的命令格式:

SD卡的指令由6字节(Byte)组成,如下:

Byte1:

01xxxxxx(命令号,由指令标志定义CMD39为100111即16进制0x27,那么完整的CMD39第一字节为01100111,即0x27+0x40)。

Byte2-5:

CommandArguments,命令参数,有些命令没有参数。

Byte6:

前7位为CRC(CyclicRedundacyCheck,循环冗余校验)校验位,最后一位为停止位0。

3.2.SD卡的命令

SD卡命令共分为12类,分别为class0到Class11.

3.2.1.Class0:

(卡的识别、初始化等基本命令集)

CMD0:

复位SD卡。

CMD1:

读OCR寄存器。

CMD9:

读CSD寄存器。

CMD10:

读CID寄存器。

CMD12:

停止读多块时的数据传输。

CMD13:

读Card_Status寄存器。

3.2.2.Class2(读卡命令集):

CMD16:

设置块的长度。

CMD17:

读单块。

CMD18:

读多块,直至主机发送CMD12为止。

3.2.3.Class4(写卡命令集):

CMD24:

写单块。

CMD25:

写多块。

CMD27:

写CSD寄存器。

3.2.4.Class5(擦除卡命令集):

CMD32:

设置擦除块的起始地址。

CMD33:

设置擦除块的终止地址。

CMD38:

擦除所选择的块。

3.2.5.Class6(写保护命令集):

CMD28:

设置写保护块的地址。

CMD29:

擦除写保护块的地址。

CMD30:

Askthecardforthestatusofthewriteprotectionbits

class7:

卡的锁定,解锁功能命令集。

class8:

申请特定命令集。

class10-11:

保留。

3.3.SD卡的工作流程

首先看下脱离操作系统如何在ARM处理器上实现SD卡的读写。

过程可以分为3个大的步骤:

初始化sd卡、写sd卡、读sd卡。

3.3.1.工作条件检测

卡在识别模式下的命令流程如图3.1所示(英文版见标准SD卡协议P24)

图3.1卡在识别模式下的命令流程

1)在主机和SD卡进行任何通信之前,主机不知道SD卡支持的工作电压范围,卡也不知道是否支持主机当前提供的电压。

因此主机首先使用默认的电压发送一条reset指令(CMD0)。

2)为了验证SD卡的接口操作状态,主机发送SEND_IF_COND(CMD8),用于取得SD卡支持工作的电压范围数据。

SD卡通过检测CMD8的参数部分来检查主机使用的工作电压,主机通过分析回传的CMD8参数部分来校验SD卡是否可以在所给电压下工作,如果SD卡可以在指定电压下工作,则它回送CMD8的命令响应字。

如果不支持所给电压,则SD卡不会给出任何响应信息,并继续处于IDLE状态。

3)在发送ACMD41命令初始化高容量的SD卡前,需要强制发送CMD8命令。

强制低电压主机在发送CMD8前发送ACMD41,万一双重电压SD卡没有收到CMD8命令且工作在高电压状态,在这种情况下,低电压主机不能不发送CMD8命令给卡,则收到ACMD41后进

入无活动状态。

4)SD_SEND_OP_COND(ACMD)命令是为SD卡主机识别卡或者电压不匹配时拒绝卡的机制设计的。

主机发送命令操作数代表要求的电压窗口大小。

如果SD卡在所给的范围内不能实现数据传输,将放弃下一步的总线操作而进入无活动。

操作状态寄存器也将被定义。

5)在主机发出复位命令(CMD0)后,主机将先发送CMD8再发送ACMD41命令重新初始化SD卡。

3.3.2.卡的初始化和识别处理

当总线被激合后,主机就开始卡的初始化和识别3处理。

初始化处理设置它的操作状态和是设置OCR中的HCS比特命令SD_SEND_OP_COND(ACMD41)开始。

HCS比特位被设置为1表示主机支持高容量SD卡。

HCS被设置为0表示主机不支持高容量SD卡。

卡的初始化和识别流程见图3.2

图3.2卡的初始化和识别流程

3.3.3.数据传输模式

卡在识别模式结束后,主机时钟fpp(数据传输时钟频率)将保存为fod(卡识别模式下的时钟),由于有些卡对操作时钟有限制。

主机必须发送SEND_CSD(CMD9)来获得卡规格数据积存器内容,如块大小,卡容量。

广播命令SET_DSR(CMD4)配置所有识别卡的驱动阶段。

它对DSR积存器进行编程以适应应用总线布局,总线上的卡数目和数据传输频率。

SD卡数据传输模式的流程图(英文版协议P26)如图3.3所示

图3.3SD卡数据传输模式的流程图

1)CMD7命令用来选择某个SD卡,使其进入Transfer状态,在指定时间段内,只有一个卡能处于Transfer状态。

当某个先前被选中的处于Transfer状态的SD卡接收到CMD7之后,会释放与控制器的连接,并进入Stand-by态。

当CMD7使用保留地址0x0000时,所有的SD卡都会进入Stand-by状态。

2)所有的数据读命令都可以被停止命令(CMD12)在任意时刻终止。

数据传输会终止,SD卡返回Transfer状态。

读命令有:

块读操作(CMD17)、多块读操作(CMD18)、发送写保护(CMD30)、发送scr(ACMD51)以及读模式下的普通命令

(CMD56)。

3)所有的数据写命令都可以被停止命令(CMD12)在任意时刻终止。

写命令也会在取消选择命令(CMD7)之前停止。

写命令有:

块写操作(CMD24,CMD25)、编程命令(CMD27)、锁定/解锁命令(CMD42)以及写模式下的普通命令(CMD56)。

4)数据传输一旦完成,SD卡会退出数据写状态,进入Programming状态(传输成功)或者Transfer状态(传输失败)。

四.Linux中SD/MMC设备驱动流程

4.1.MMC子系统的基本框架

4.1.1.MMC子系统的代码在kernel/driver/MMC下面,目前MMC子系统支持一些形式的记忆卡:

SD,SDIO,MMC。

4.1.2.HOST:

针对不同主机的驱动程序,这一部分需要根据自己的特定平台来完成。

4.1.3.CORE:

这是整个MMC的核心层,这部分完成了不同协议和规范的实现,并且为HOST层的驱动提供接口函数。

4.1.4.CARD:

因为这些记忆卡都是块设备,当然需要提供块设备的驱动程序,这部分就是实现了将SD卡如何实现为块设备的。

4.1.5.各层之间的关系

4.2.重要的结构体

4.2.1.structmmc_host用来描述卡控制器位kernel/include/linux/mmc/host.h下面。

4.2.2.structmmc_card用来描述卡位于kernel/include/linux/mmc/card.h下面

4.2.3.structmmc_driver用来描述mmc卡驱动在kernel/include/linux/mmc/card.h下面。

4.2.4.structmmc_host_ops用来描述卡控制器操作集,用于从主机控制器向core层注册操作函数,从而将core层与具体的主机控制器隔离。

也就是说core要操作主机控制器,就是这个ops当中给的函数指针操作,不能直接调用具体主控制器的函数。

位于kernel/include/linux/mmc/host.h下面。

2.5.structmmc_ios用于描述了控制器对卡的I/O状态。

位于kernel/include/linux/mmc/host.h下面。

4.2.6.structmmc_request用于描述读写MMC卡的请求,它包括命令,数据以及请求完成后的回调函数。

位于kernel/include/linux/mmc/core.h中。

4.2.7.structmmc_queue是MMC的请求队列结构,它封装了通用请求队列结构,加入了MMC卡相关结构。

位于kernel/drivers/mmc/card/queue.h中。

4.2.8.structmmc_data描述了MMC卡读写的数据相关信息,如:

请求,操作命令,数据以及状态等。

位于kernel/include/linux/mmc/core.h中。

4.2.9.structmmc_command描述了MMC卡操作相关命令及数据,状态信息等。

位于kernel/include/linux/mmc/core.h中。

4.3.host,core以及card之间的关联和处理流程

4.3.1总体的流程如下图所示

4.3.2.数据.命令的处理流程在代码分析那里会仔细分析

4.4:

核心任务

MMC/SD卡的驱动整个构架由三个文件组成,其实一共就做了两件事件:

1).卡的检测。

2).卡数据的读取。

4.4.1.卡的检测中涉及到的函数

tcc_mmc_probe(host/tcc_sdhc.c)

mmc_alloc_host(core/core.c)

mmc_rescan(core/core.c)

mmc_attach_mmc(core/mmc.c)

mmc_init_card(core/mmc.c)

mmc_add_card(core/bus.c)

device_add

mmc_bus_match(core/bus.c)

mmc_bus_probe(core/bus.c)mmc_blk_probe(card/block.c)

alloc_disk/add_disk

4.4.2.卡中数据读写涉及到的函数

mmc_blk_issue_rq(card/block.c)

mmc_wait_for_req(core/core.c)

mmc_start_request(core/core.c)

host->ops->requset(host,mrq)

//tcc_sdhc.c中的tcc_mmc_request

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 法律文书 > 调解书

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2