110kv无人值守变电站初步设计毕业论文Word文件下载.doc

上传人:wj 文档编号:466626 上传时间:2023-04-29 格式:DOC 页数:38 大小:1.75MB
下载 相关 举报
110kv无人值守变电站初步设计毕业论文Word文件下载.doc_第1页
第1页 / 共38页
110kv无人值守变电站初步设计毕业论文Word文件下载.doc_第2页
第2页 / 共38页
110kv无人值守变电站初步设计毕业论文Word文件下载.doc_第3页
第3页 / 共38页
110kv无人值守变电站初步设计毕业论文Word文件下载.doc_第4页
第4页 / 共38页
110kv无人值守变电站初步设计毕业论文Word文件下载.doc_第5页
第5页 / 共38页
110kv无人值守变电站初步设计毕业论文Word文件下载.doc_第6页
第6页 / 共38页
110kv无人值守变电站初步设计毕业论文Word文件下载.doc_第7页
第7页 / 共38页
110kv无人值守变电站初步设计毕业论文Word文件下载.doc_第8页
第8页 / 共38页
110kv无人值守变电站初步设计毕业论文Word文件下载.doc_第9页
第9页 / 共38页
110kv无人值守变电站初步设计毕业论文Word文件下载.doc_第10页
第10页 / 共38页
110kv无人值守变电站初步设计毕业论文Word文件下载.doc_第11页
第11页 / 共38页
110kv无人值守变电站初步设计毕业论文Word文件下载.doc_第12页
第12页 / 共38页
110kv无人值守变电站初步设计毕业论文Word文件下载.doc_第13页
第13页 / 共38页
110kv无人值守变电站初步设计毕业论文Word文件下载.doc_第14页
第14页 / 共38页
110kv无人值守变电站初步设计毕业论文Word文件下载.doc_第15页
第15页 / 共38页
110kv无人值守变电站初步设计毕业论文Word文件下载.doc_第16页
第16页 / 共38页
110kv无人值守变电站初步设计毕业论文Word文件下载.doc_第17页
第17页 / 共38页
110kv无人值守变电站初步设计毕业论文Word文件下载.doc_第18页
第18页 / 共38页
110kv无人值守变电站初步设计毕业论文Word文件下载.doc_第19页
第19页 / 共38页
110kv无人值守变电站初步设计毕业论文Word文件下载.doc_第20页
第20页 / 共38页
亲,该文档总共38页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

110kv无人值守变电站初步设计毕业论文Word文件下载.doc

《110kv无人值守变电站初步设计毕业论文Word文件下载.doc》由会员分享,可在线阅读,更多相关《110kv无人值守变电站初步设计毕业论文Word文件下载.doc(38页珍藏版)》请在冰点文库上搜索。

110kv无人值守变电站初步设计毕业论文Word文件下载.doc

4.1短路电流计算 26

4.2电气设备的选择校验 27

4.2.1高压断路器的选择校验 27

4.2.2隔离开关的选择校验:

28

4.2.3电流互感器的选择校验 29

4.2.4支柱绝缘子的选择校验 29

4.2.510KV穿墙套管的选择 29

4.2.6母线导体的选择校验:

30

工作总结 32

致谢

参考资料及文献 33

附录 34

第一章前言

1.1无人值班变电站的发展过程、特点、设计原则

1.1.1无人值班变电站的发展过程

变电站无人值班运行管理,早在50年代末60年代初,许多供电局就进行了无人值班的试点,当时采用的是从原苏联引进的有接点远动技术,型号是SF-58,但由于技术手段不完善,管理体制不适应,认识上的种种原因,除上海、郑州等少数地区外都没有坚持。

80年代以来,自动化技术的完善,特别是人们对变电站无人值班认识的提高,郑州、深圳、大连、广东出现无人值班,1996年底全国有60余座,97年底有1000余座。

1.1.2特点

增强了设备可靠性:

无论是正常操作或事故处理,均通过自动化系统,减少了人为失误,降低了出差错的概率,及时准确可靠;

简化生产管理环节:

以实现远动和自动化为基础,人到自动化的转变使生产管理环节得以解放;

降低了电力建设造价:

采用先进的远动及自动化设备,优化系统结构,减少设备可用空间,减少占地面积和生产辅助设备及生活设施,降低工程造价;

推进供电网络科学化管理;

在供电网络中,降压变电站进线由地区电网接入降至配电电压与用户连接,将降压变电站、开关站及相关馈线综合考虑实行自动化管理,增强供电可靠性,提高科学管理水平。

1.1.3设计原则

结合本地区电网规划、电网调度自动化系统规划和通信规划,根据电网结构、变电站地理环境、交通、消防条件、站地区社会经济状况,因地制宜地制定设计方案;

除按照电网规划中规定的变电站在电网中地位和作用考虑其控制方式外,其与电网配合、继电保护及安全自动装置等均应能满足运行方式的要求;

自动化技术装备上要坚持安全、可靠、经济实用、正确地处理近期建设与远期发展关系,做到远近结合;

节约用电,减少建筑面积,既降低电网造价,又满足了电网安全经济运行;

对一、二次设备及土建进行必要简化,取消不必要措施;

应满足备用电源自投、无功功率和电压调节。

1.2基本概念

1.2.1按突然中断供电造成的损失程度分为:

一级负荷、二级负荷、三级负荷。

一级负荷中断供电将造成人身伤亡和将在政治经济上造成重大损失,如造成重大设备损坏,打乱重点企业生产次序并需要长时间的恢复,重要铁路枢纽无法工作,经常用于国际活动的场所的负荷。

1.2.2一级负荷供电可靠性要求高,一般要求有一个以上的供电电源(来自不同的变电所或发电厂,或虽来自同一变电所,但故障时不相互影响不同母线段供电)。

1.2.3同时率----各用户负荷最大值不可能在同一时刻出现,一般同时率大小与电力用户多少、各用户的用电特点有关。

对所建变电所在电力系统中的地位、作用和用户的分析,变电所根据它在系统中的地位,可分为以下几类:

1.2.4枢纽变电所:

位于电力系统的枢纽点,连接电力系统的高压和中压的几个部分,汇集多个电源,电压为330--500kv的变电所,成为枢纽变电所。

全所停电后,将引起系统的瘫痪。

1.2.5中间变电所:

高压侧以交流潮流为主,起系统交换功率的作用,或是长距离输电线路分段,一般汇集2-3个电源,电压为220-330kv,同时降压供当地使用,这样的变电所主要起中间环节的作用,所以叫中间变电所。

全所停电后将引起区电网瓦解。

1.2.6地区变电所:

高压侧一般为110-220kv,向当地用户供电为主的变电所,这是一个地区或城市的主要变电所。

全所停电后,仅使该地区中断供电。

1.2.7终端变电所:

在输电线路的终端,接近负荷点,高压侧多为110kv经降压后直接向用户供电的变电所。

全所停电后仅使用户中断供电。

第二章变电站一次系统的设计

2.1原始材料分析及主变的选择

由原始资料知,新建变电站位于市工业区,临近负荷中心,用于工业和城市生活用电。

且该新建变电站有110kv及10kv两个电压等级,110kv有两回线路,10kv有十回线路,可知该变电所为一地区变电所。

根据《电力工程电气设计手册》的要求,并结合本变电站的具体情况及相关要求,选用两台同样型号的无励磁调压的两绕组变压器。

2.1.1主变容量的确定

主变压器容量应根据5-10年的发展规划进行。

根据城市规划、负荷性质、电网结构等综合考虑确定其容量。

对重要变动所,应考虑当一台主变压器停运时,其余变压器容量在计及过负荷能力允许时间内,应满足Ⅰ类及Ⅱ类负荷的供电。

对于装设两台变压器的变电所,每台变压器的容量Sn通常按下式进行初选:

Sn>

=Simp

式中:

Simp—变电所全部重要负荷容量

变电所某一级电压的最大计算负荷为:

Smax=Kt∑Pmax(1+α)/cosα

式中Kt—同时率;

Pmax、cosα各用户的最大有功和功率因数

α—该电压级电网的线损率

计算如下:

Pimp=7.5*80%+2*75%+6*80%+2*80%+3*40%+3.5*80%+4.6*70%+3.4*50%=22.82MW

Simp=0.85*22.82*(1+5%)/0.8=25.46MVA

考虑到同一重要负荷不在同一时刻出现,应考虑同时率Kt=0.85

2.1.2变压器台数的选择

为保证供电可靠性,变电所一般装设两台主变压器,以免一台主变故障或检修时中断供电。

考虑近期及远景规划,经上述分析,拟选用SF7-40000/110型变压器。

2.1.3变压器相数的选择

对于330kv及以下的变电所,在设备运输不受条件限制时,应采用三相变压器。

2.1.4主变绕组数量的选择

对接入负荷中心具有直接从高压降为低压供电的变电所,为简化电压等级和避免重复容量,一般采用双绕组变压器。

2.1.5绕组联结方式

我国110kv级以上的电压变压器绕组都采用“Y”连接,35kv及以下电压等级,变压器都采用“Y-Δ”连接,故选择YN,D11连接。

2.1.6结论根据电压允许波动范围为5%以内,结合本站实际选择两台同样型号的双绕组无励磁电力变压器SF7-40000/110。

2.2电气主接线设计

电气主接线是发电厂、变电站的设计主体。

采用何种形式的接线,与电力系统原始资料,发电厂、变电站本身的可靠性、灵活性、经济性的要求密切相关,并且对电气设备的选择、配电装置布置、继电保护和控制方式的拟定都有较大的影响。

因此,主接线的设计必须根据电力系统、发电厂或变电站的具体情况,全面分析,正确地处理好各方面的关系,合理地选择主接线方案。

电气主接线设计的基本原则:

电气主接线设计应以设计任务为依据,以国家经济建设的方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下,兼顾运行、维护方便,尽可能地节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、适用、经济、美观的原则。

主接线设计的基本要求:

在设计主接线时,应使其满足供电可靠、运行灵活和经济等项基本要求。

可靠性

断路器检修时不宜影响对系统的供电;

线路、断路器、母线发生故障或母线检修时,应保证对重要用户的供电。

灵活性

调度灵活,操作简便:

应能;

灵活地投入(或切除)某些机组、变压器或线路,调配电源和负荷,能满足系统在事故、检修及特殊运行方式下的调度要求;

检修安全:

应能方便地停运断路器、母线及其继电保护设备,进行安全检修而不影响电力网的正常运行及对用户的供电;

扩建方便:

应能容易地从初期过渡到最终接线,使在扩建过渡时,一次和二次设备等所需的改造最少。

经济性

投资省:

主接线应简单清晰,以节约断路器、隔离开关等一次设备投资;

要使控制、保护方式不过于复杂,以利于运行并节约二次设备和电缆投资;

要适当限制短路电流,以便选择价格合理的电器设备;

占地面积少:

电气主接线设计要为配电装置的布置创造条件,以便节约用地和节省架构、导线、绝缘子及安装费用;

电能损耗少:

经济合理地选择主变压器的型式、容量和台数,避免两次变压而增加电能损失。

2.2.1110kv侧接线

这里主要介绍有汇流母线接线中的单母线接线、单母分段接线和无汇流母线的桥型接线。

单母线接线具有简单清晰、设备少、投资小、运行操作方,且有利于扩建等优点。

但可靠性、灵活性较差,这种接线只适用于6-220KV系统中只有一台发电机或一台主变压器,且出线回路数又不多的中、小型发电厂或变电所,它不能满足一、二类用户的要求。

单母分段接线对重要用户可以从不同段引出两回馈线回路,由两个电源供电,当一段母线发生故障,分段断路器自动将故障段隔离,保证正常段母线不间断供电,不致使重要用户停电。

这种接线广泛用于中小容量发电厂的6-10KV接线和6-220KV变电所中。

桥型接线的特点:

一般当只有两台变压器和两条输电线路时,采用桥型接线。

高压断路器数量少,是比较经济的接线,四个元件只需要三台断路器,线路的投入和切除操作方便,线路故障是仅将故障线路断路器断开,其它线路和变压器不受影响。

现将内桥接线和外桥接线作以比较。

2.2.1.1内桥

优点:

高压断路器数量少,四个元件只需要三台断路器

缺点:

1)变压器切除投入较复杂,需操作两台断路器并影响一回路暂时停电。

2)连接桥断路器检修时两个回路需解列运行。

3)出现断路器检修时,出线在此期间停运。

适用范围:

容量较小的发电厂或变电所,并且变压器不经常切换或线路较长、故障率较高

2.2.1.2外桥

1)线路切除投入较复杂,需要操作两台断路器,并有一台变压器暂时停运;

2)连接桥断路器检修时两个回路需解列运行;

3)变压器侧断路器检修时,变压器停运。

容量较小的发电厂或变电所,并且变压器切换较频繁或线路较短,故障率较小的情况,线路有穿越功率时采用此接线,因为穿越功率只流过一个断路器,断路器检修时对此功率影响小。

根据实际情况,110kv有两回路进线,有穿越功率流过,110kv侧选用外桥型接线。

2.2.210kv侧电气主接线的选择

10kv侧出线有十回,故考虑单母接线和单母分段,优缺点比较如下:

表110kv主接线的选择方案比较

方案

单母接线

不够灵活可靠,母线或隔离

开关故障或检修时均使整个

配电装置停电

接线简单清晰,设备

少,操作方便,便于

扩建和采用成套配电

装置

同左

单母分段接线

用断路器把母线分段后,对

重要用户可以从不同段引出

两个回路,有两个电源;

一段母线故障时分段断路器

能将故障切除保证正常段的

不间断供电和不致使用户停

简单经济方便实用,

克服了单母接线的

缺点

10kv侧出线有十回,按照规程规定:

单母分段既具有单母接线简单经济方便的优点,又在一定程度上克服了它的缺点,对重要用户从不同段引出两个回路,使重要用户有两个电源,提高了供电可靠性,220kv及以下变电所供应当地的6-10kv配电装置,由于采用了制造厂制造的成套开关柜,地区电网成环网运行检修水平的迅速提高,采用单母分段一般能满足要求。

不设旁路的原因:

(1)6-10kv回路供电负荷小,供电距离短,并一般可在网络中取得备用电源;

(2)向工业供电回路一般比较多,企业内有备用电源,允许一回路停电;

(3)6-10kv大多为电缆出线,事故跳闸次数少。

综合考虑以上因素:

本变电站位于市区,减少配电装置占地和占用空间,消除火灾隐患及环保要求,此接线不带有旁路。

2.2.3结论:

110kv采用外桥型接线,10kv采用单母分段接线。

2.3所用电设计及功率因数的补偿

2.3.1所用电的设计

确定所用变压器的参数,一般的变电所,均装设有两台变压器,以满足整流操作电源,强迫油循环变压器,无人值班的要求;

确定所用变压器容量:

根据所用负荷统计和计算,选用合适的变压器容量;

确定变压器电源引接方式。

当变电所内有较低的电压母线时,一般从这类母线引接电源,这种引线具有经济、可靠的优点。

选择结果

所用电的引接:

为了保证供电的可靠性,所用电分别从10kv母线上引接,为了节省投资,所用变采用隔离开关加高压熔断器与母线连接。

所用电容量:

这里选用两台S9-M-50型,参数如下:

表2所用变压器数据表

额定容量

KVA

连接组别号

空载损耗

KW

负载损耗

空载电流

A

短路阻抗

Ω

50

Y,yn0

0.17

0.87

2

4

2.3.2功率因数的补偿

PΣ=(7.5+2+6+2+2.4+3+3.5+4.6+3.4+3.6)*0.85=32.3MW

原来的功率因数是0.8,要求补偿到0.9以上,采用在低压侧并联电容器的方法:

cosΨ=0.8Ψ=36.87ocosΨ´

=0.9Ψ´

=25.84o

要求补偿的无功容量为:

Qc=P*(tanΨ´

-tanΨ)=32.3*(tan36.87o-tan25.84o)=8.58Mvar

每相补偿的电容值C=Qc/3ωμ2=8.58*106/(3*314*10*103)=91.08μf

电容值选择数值至少为91.08μf,每相装设一个电容器。

2.4短路电流的计算

2.4.1计算的目的和内容

为了选择断路器等电器设备或对这些设备提出技术要求;

评价并确定网络方案;

研究限制短路电流的措施;

为继电保护整定和调试提供数据;

分析计算送电线路对通讯设施的影响。

在电力系统设计中,短路电流的计算应按照远景规划水平考虑,远景规划水平一般按建成后5-10年。

计算内容为系统在最大运行方式时各枢纽点的三相短路电流。

工程设计中,短路电流计算均采用实用计算法。

所谓实用计算法是指在一定的假设条件下计算出短路电流的各个分量,而不是用微分方程求解短路电流的完整表达式。

2.4.2计算的假设条件

故障前为空载,即负荷略去不计,只计算短路电流的故障分量;

故障前所有电压均等于平均额定电压,其标幺值等于1;

系统各个元件电阻略去不计(1kv及以上的高压电网);

只计算短路电流的基频分量。

2.4.3各元件参数的计算

选取基准电压Ub=Uav=115,Sb=100,则等值图中各计算值为:

线路Xb=0.4Ω/KM,只计算三相短路电流

XS1*=XS1*Sb/Sj=0.6*100/1250=0.048

XS2*=XS2*Sb/Sj=0.8*100/350=0.029

X11*=x1l1*SB/U2av=0.4*10*100/1152=0.03

X12*=x1l2*SB/U2av=0.4*14*100/1152=0.042

X13*=x1l3*SB/U2av=0.4*6*100/1152=0.018

X14*=x1l4*SB/U2av=0.4*20*100/1152=0.06

主变的计算:

Xt*=Uk(%)*SB/(100*SN)=10.5*100/(100*40)=0.2625

短路电流的计算分为次暂态电流----短路电流周期分量的有效值和短路冲击电流,前者用于检验断路器开端容量和继电保护的整定热稳定计算,后者用于动稳定的计算。

2.4.4短路电流的计算步骤

短路电流计算的基准值Ub=Uav=115kv,Sb=100MVA;

计算各元件参数的标幺值,做出等值电路;

进行网络简化,求出电源点与短路点之间的电抗,此电抗称为入端电抗;

求出短路电流标幺值,进而求出短路电流有名值;

计算冲击电流有效值。

2.4.5系统等值图

图1系统等值图

计算结果如下列表:

(计算过程见计算书)

表3各短路点计算结果

短路点

次暂态电流有效值

(KA)

冲击电流幅值ish

d1

10.68

27.18

d2

2.82

7.18

2.5电气设备的选择

正确地选择电气设备是电气主接线和配电装置达到安全、经济运行的重要条件。

在进行电气设备选择时,应根据工程实际情况,在保证安全可靠的前提下,积极而稳妥地采用新技术,并注意节省投资,选择合适的电气设备。

电气设备的选择要能可靠的工作,必须按正常工作条件进行选择,并按短路状态进行校验动稳定和热稳定。

电气设备选择的一般要求如下:

应满足各种运行、检验、短路和过电压情况的要求,并考虑远景发展;

应按照当地环境条件(如海拔、大气污染程度和环境污染程度等)校验;

应力求技术先进和合理;

与整个工程建设标准应协调一致;

同类设备应尽量减少品种;

选择的新产品均应有可靠的试验数据,并经正式鉴定合格。

2.5.1高压断路器的选择

高压断路器的主要功能:

正常运行时,用来倒换运行方式,把设备或线路接入电路或退出运行,能起保护作用。

高压断路器是开关设备中功能最为完善的一种,其最大特点是能断开负荷电流和短路电流。

1)断路器种类和型式的选择:

除满足各项技术条件外,还应考虑安装调试和运行维护方便。

一般6-35kv采用真空断路器,35-500kv采用SF6断路器。

2)额定电压的选择:

UN>

=UNSUNS-----电网额定电压

3)额定电流的选择:

IN>

=IMAXIMAX------各种合理方式下最大持续工作电流

4)开断短路电流的选择

INbr>

=IPT(或I"

IPT为实际开断瞬间的短路电流周期分量,开断电器应能在最严重的情况下开断短路电流,故断路器的开断计算时间t应为主保护时间和断路器固有分闸时间之和。

热稳定校验

I2t*t>

=QK

It、t-----电器允许通过的热稳定电流和时间QK----短路电流热稳定效应

动稳定校验

Ies>

=Ish

Ies、Ish-----短路冲击电流幅值和电器允许通过的动稳定电流幅值

7)110kv侧高压断路器选择结果如下

表4列出的断路器计算数据与所选断路器的参数比较如下

计算数据

SW6—110

UNS110KV

UN110KV

IMAX210A

IN1200A

I"

10.68KA

INbr15.8KA

QK351.31[(KA)2*S]

It2*t998.56[(KA)2*S]

Ish27.18KA

Ies41KA

由选择可知其结果正确,各项数据均满足要求,故110KV侧选用SW6—110型断路器。

8)10kv侧高压断路器选择结果如下

表5列出的断路器计算数据与所选断路器的参数比较如下

SN10—10Ⅲ

UNS10KV

UN10KV

IMAX2309A

IN3000A

2.82KA

INbr40KA

QK24.81[(KA)2*S]

It2*t6400[(KA)2*S]

Ish7.18KA

Ies125KA

由选择可知其结果正确,各项数据均满足要求,故10KV侧选用SN10—10Ⅲ型断路器。

2.5.2隔离开关的选择

隔离开关是发电厂和变电所的常用电器,它需要与断路器配套使用。

但是隔离开关无灭弧装置,不能用来接通和切断负荷电流、短路电流,其主要用途是:

隔离电压

倒闸操作

分合小电流

隔离开关的型号应根据配电装置的布置特点和使用要求等因素,进行综合的技术经济比较后确定。

其选择的具体方法与断路器的1)2)3)4)5)6)相同,不再重复。

根据对隔离开关操作控制的要求,还应选择其配用的操动机构。

屋内式80000A以下的隔离开关一般采用手动的操作机构;

220KV及以上高位布置的隔离开关宜采用电动机构和液压机构。

将以上各个选择条件与短路电流的计算结果相比较,经过计算后,设备选型如下

表6隔离开关选择结果

设备选型

技术数据

UN(KV)

IN(A)

Ies(KA)

5s热稳定电流(KA)

GW5-110/630

110

630

20

GN2-10/3000

10

3000

100

隔离开关的校验:

隔离开关的校验的具体方法与断路器的1)2)3)4)5)相同,不再重复。

查表得:

110KV采用GW5-110/630型,10KV采用GN2-10/3000型。

2.5.3电流互感器的选择

电流互感器(CT)是一次系统和二次系统间联络元件,用以分别向测量仪表、继电器线圈供电,正确反映电气设备正常运行和故障情况。

作用是:

●将一次回路的大电流变为二次回路的小电流(5A或1A),使测量仪表和保护装置标准化,小型化,并使其结构巧,价格便宜和便于屏内安装;

●使二次设备与高压部分隔离,且互感器二次侧均接地,从而保证设备和人身的安全。

1)型式选择

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2