水工钢结构设计文档格式.doc

上传人:聆听****声音 文档编号:469648 上传时间:2023-04-29 格式:DOC 页数:22 大小:1,000.50KB
下载 相关 举报
水工钢结构设计文档格式.doc_第1页
第1页 / 共22页
水工钢结构设计文档格式.doc_第2页
第2页 / 共22页
水工钢结构设计文档格式.doc_第3页
第3页 / 共22页
水工钢结构设计文档格式.doc_第4页
第4页 / 共22页
水工钢结构设计文档格式.doc_第5页
第5页 / 共22页
水工钢结构设计文档格式.doc_第6页
第6页 / 共22页
水工钢结构设计文档格式.doc_第7页
第7页 / 共22页
水工钢结构设计文档格式.doc_第8页
第8页 / 共22页
水工钢结构设计文档格式.doc_第9页
第9页 / 共22页
水工钢结构设计文档格式.doc_第10页
第10页 / 共22页
水工钢结构设计文档格式.doc_第11页
第11页 / 共22页
水工钢结构设计文档格式.doc_第12页
第12页 / 共22页
水工钢结构设计文档格式.doc_第13页
第13页 / 共22页
水工钢结构设计文档格式.doc_第14页
第14页 / 共22页
水工钢结构设计文档格式.doc_第15页
第15页 / 共22页
水工钢结构设计文档格式.doc_第16页
第16页 / 共22页
水工钢结构设计文档格式.doc_第17页
第17页 / 共22页
水工钢结构设计文档格式.doc_第18页
第18页 / 共22页
水工钢结构设计文档格式.doc_第19页
第19页 / 共22页
水工钢结构设计文档格式.doc_第20页
第20页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

水工钢结构设计文档格式.doc

《水工钢结构设计文档格式.doc》由会员分享,可在线阅读,更多相关《水工钢结构设计文档格式.doc(22页珍藏版)》请在冰点文库上搜索。

水工钢结构设计文档格式.doc

一、设计资料

某供水工程,工程等级为一等一级,其某段渠道上设有节制闸。

节制闸工作闸门操作要求为动水启闭,采用平面定轮钢闸门。

本闸门结构设计按SL74—95《水利水电工程钢闸门设计规范》进行,基本资料如下:

孔口尺寸:

6.0m×

6.0m(宽×

高);

底槛高程:

23.0m;

正常高水位:

35.0m;

设计水头:

12.0m;

门叶结构材料:

Q235A。

二、闸门结构的形式及布置

例图1-1闸门主要尺寸(单位:

m)

1.闸门尺寸的确定(例图1-1)

闸门高度:

H=6.2m

闸门的荷载跨度为两侧止水的间距:

L1=6m

闸门的计算跨度:

L=L1+2d=6+2×

0.2=6.4m

2.主梁的形式

主梁的形式应根据水头和跨度的大小而定,本闸门属中等跨度,为了便于制造和维护,决定采用实腹式组合梁。

3.主梁的布置

根据闸门的高跨比L=H,决定采用双主梁。

为使两个主梁在设计水位时所受的水压力相等,两个主梁的位置应对称与水压力的作用线。

单位宽度上的水压力P=(58.8+117.6)×

2=529.2(kN/m)

Y=(58.8×

2+58.8×

3)÷

529.2=2.67(m)

要求下悬臂a0.12H和a0.4m,上悬臂c0.45H,取

a=0.77m≈0.12H=0.72m

主梁间距:

2b=2×

(2.67-0.77)=3.8m

则c=H-2b-a=6-3.8-0.77=1.43m<

0.45H(满足要求)

4.梁格的布置和形式

梁格采用复式布置和等高连接,水平次梁穿过横隔板上的预留孔并被横隔板所支承。

水平次梁为连续梁,其间距应上疏下密,使面板各区格需要的厚度大致相等,梁格布置的具体尺寸详见例图1-2。

例图1-2梁格布置尺寸图(单位:

mm)

5.连接系的布置和形式

(1)横向连接系,根据主梁的跨度,决定布置3道横隔板,其间距为1.6m,横隔板兼作竖直次梁。

(2)纵向连接系,设在两个主梁下翼缘的竖直平面内,采用斜杆式桁架。

6.边梁与行走支承

边梁采用单腹式、行走支承采用胶木滑道。

三、面板设计

根据SL74—95《水利水电工程钢闸门设计规范》修订版,关于面板设计的计算,先估算面板的厚度,在主梁截面选择之后再验算面板的局部弯曲与主梁整体弯曲的折算应力。

1.估算面板厚度

假定梁格布置尺寸如,面板厚度按下式据算:

t=a

当b/a3时,a=1.5,则t=a=0.068a

当b/a>

3时,a=1.5,则t=a=0.07a

现列例表1-1计算如下:

例表1-1

面板厚度的估算

区格

a

(mm)

b

b/a

k

p

(N/mm)

t

1

735

1590

2.16

0.699

0.061

0.206

10.29588

2

695

2.29

0.499

0.069

0.186

8.79036

3

655

2.43

0.077

0.196

8.72984

4

690

2.3

0.084

0.205

9.6186

5

0.091

0.213

9.99396

6

0.099

0.222

10.41624

7

0.106

0.23

10.2442

8

600

2.65

0.734

0.114

0.289

11.7912

注:

1.面板边长a、b都从面板与梁格的连接焊缝算起,主梁上翼缘宽度为140mm(详见于后);

2.区格1、8中系数k由三边固定一边简支板查得。

根据上表计算,选用面板厚度t=12mm。

2.面板与梁格的连接计算

面板局部挠曲时产生的垂直于焊缝长度方向的横向拉力P,已知面板厚度t=12mm,并且近似地取板中最大弯应力σmax==160N/mm2,则

P=0.07tσmax=0.07×

12×

160=134.4(N/mm)

面板与主梁连接焊缝方向单位长度内的剪力:

T==

计算面板与主梁连接的焊缝厚度:

面板与梁格连接焊缝最小厚度=6mm

四、水平次梁、顶梁和底梁的设计

1.荷载与内力的计算

水平次梁和顶、底梁都是支承在横隔板上的连续梁,作用在他们上面的水压力可按下式计算,即

现例表1-2计算后得:

例表1-2

水平次梁、顶梁和底梁均布荷载的计算

梁号

梁轴线处水压强度p(kN/m)

梁间距

(m)

(kN/m)

1(顶梁)

58.8

0.4

23.52

65

0.8

52.00

3(上主梁)

72.8

0.78

56.78

80.3

0.76

61.03

87.7

66.65

95.2

72.35

102.6

77.98

8(下主梁)

110.1

0.715

78.72

9(底梁)

117.6

0.67

0.335

39.40

根据例表,水平次梁计算载荷取78.8kN/m,水平次梁为四跨连续梁,跨度为1.6m(例图1-3),水平次梁弯曲的边跨中弯矩为

M次中=0.077ql2=0.077×

78.8×

1.62=15.5(kN·

支座B处的负弯矩为

M次B=0.107ql2=0.107×

1.62=21.6(kN·

例图1-3水平次梁计算简图和弯矩图

2.截面的选择

W===135000(mm)

考虑利用面板作为次梁截面的一部分,初选[18a,由附录三表4表查得:

A=2569();

WX=141400();

=12727000();

=68(mm);

d=7(mm)

面板参加次梁工作有效宽度按下式计算,然后取其中最小值。

B≤+60t=68+60×

12=788(mm)

B=ξ1b(对跨间正弯矩段);

B=ξ2b(对支座负弯矩段);

按5号梁计算,设梁间距b=(b1+b2)/2=(840+810)/2=825(mm).确定上式中面板的有效宽度系数ξ时,需要知道梁弯矩零点之间的距离L0与梁间距b之比值。

对于第一跨中正弯矩段取l0=0.8l=0.8×

1600=1280(mm);

对于支座负弯矩段取l0=0.4l=0.4×

1600=640(mm)。

根据l0/b查表7-1得:

对于l0/b=1280/825=1.55,得ξ1=0.59,则B=ξ1b=0.59×

825=487(mm)

对于l0/b=640/825=0.78,得ξ2=0.24,则B=ξ2b=0.24×

825=198(mm)

对于第一跨中弯矩选用B=788(mm),则水平次梁组合截面面积(例图1-4)为

A=2569+788×

12=12025(mm2)

组合截面形心到槽钢中心线的距离:

跨中组合截面的惯性矩及截面模量为

例图1-4面板参加水平次梁工作后的组合截面

对支座段选用B=198(mm).则组合截面面积:

A=2569+198×

12=4945(mm2)

e=(198×

96)/4945=46(mm)

支座处组合截面的惯性矩及截面模量:

I次B=12727000+2569×

462+198×

522=24587708(mm4)

Wmin=24587708/136=180792(mm2)

3.水平次梁的强度验算

由于支座处B弯矩最大,而截面模量较小,故只需验算支座B处截面的抗弯强度,即:

==21.6×

106/180792=119.5(N/mm2)<

[σ]=160(N/mm2)

说明水平次梁选用[18a槽钢满足要求。

扎成梁的剪应力一般很小,可不必验算。

4.水平次梁的挠度验算

受均布荷载的等跨连续梁,最大挠度发生在边跨,由于水平次梁在B支座处截面的弯矩已经求得M次B=21.6kN·

m,则边跨挠度可近似地按下式计算:

=-

=0.0003163=

故水平次梁选用[18a槽钢满足强度和刚度要求。

5.顶梁和底梁

顶梁和底梁均采用[18a.

五、主梁设计

(一)设计资料

(1)主梁跨度(例图1-5):

净跨(孔口宽度)Lo=6m,计算跨度L=6.4m,荷载跨度L1=6m;

(2)主梁荷载:

q=264.6kN/m;

(3)横向隔板间距:

1.6m;

(4)主梁容许挠度[w]=L/600。

(二)主梁设计

主梁设计内容包括:

1.截面选择;

2.梁高改变;

3.翼缘焊缝;

4.腹板局部稳定验算;

5.面板局部弯曲与主梁整体弯曲的折算应力验算。

1.截面选择

(1)弯矩与剪力。

弯矩与剪力计算如下:

Mmax=

例图1-5平面钢闸门的主梁位置和计算简图

(2)需要的截面抵抗矩已知Q235钢的容许应力=160N/mm,考虑钢闸门自重引起的附加应力作用,取容许应力=0.9×

160=144N/mm2,则需要的截面抵抗模量为:

(3)腹板高度选择。

按刚度要求的最小梁高(变截面梁)为:

hmin=0.96×

0.23=0.96×

0.23×

=59.3(cm)

经济梁高:

hec=3.1w2/5=3.1×

51042/5=120(cm)。

由于钢闸门中的横向隔板重量将随主梁增高而增加,故主梁高度宜选得比hec,但不小于hmax,现选用腹板高度h0=100cm.

(4)腹板厚度选择按经验公式计算:

tw===0.91cm,选用tw=1.0cm.

(5)翼缘截面选择。

每个翼缘需要截面为:

A1=

下翼缘选用t1=2.0cm(符合钢板规格)

需要b1=,选用b1=40cm().

上翼缘的部分截面可利用面板,故只需设置较小的上翼缘板同面板相连,选用t1=2.0cm,b1=16cm.面板兼作主梁上翼缘的有效宽度取为:

B=b1+60t=16+60×

1.2=88cm.

上翼缘面积:

A1=16×

2+88×

1.2=137.6(cm2)

(6)弯应力强度验算。

主梁跨中截面(见图1-6)的几何特性如下表:

截面形心矩:

y1=

截面惯性矩:

截面模量:

上翼缘顶边:

Wmon=

下翼缘底边:

Wmax=

弯应力:

例表1-3主梁跨中截面的几何特性

部位

截面尺寸

(cm×

cm)

截面面积A

(cm)

各形心离面板表面距离y´

Ay´

各形心离中和轴距离y=y´

-y1

Ay

面板部分

88×

1.2

105.6

0.6

63.4

-42.8

193420

上翼缘板

14×

2.0

32

2.2

70.4

-41.2

54300

腹板

100×

1.0

100

53.2

5320

9.8

9600

下翼缘

40×

80

104.2

8336

60.8

295700

合计

317.6

13789.8

553020

(7)整体稳定性与挠度验算。

因主梁上翼缘直接同钢板相连,按规范规定,可不必验算整体稳定性。

又因梁高大于刚度要求的最小梁高,故梁的挠度也不必验算。

例图1-7主梁支承端截面(单位:

例图1-6主梁支承端截面位置图(单位:

例图1-6主梁跨中截面(单位:

例图1-8主梁变截面位置图(单位:

2.截面改变

因主梁跨度较大,为减小门槽宽度和支承边梁高度(节省钢材),有必要将主梁支承段腹板高度宽度减小h0s=0.8h0=0.8×

100=80cm(例图1-7)。

梁高开始改变的位置取在临近支承段的横向隔板下翼缘的外侧(例图1-8),离开支承段的距离为160-10=150cm。

剪切强度验算:

考虑到主梁段部的腹板及翼缘部分分别同支承边梁的腹板及翼缘相焊接,故可按工字钢截面来验算剪应力强度。

主梁支承端截面的几何特性如下表1-4。

截面形心距:

y1.

截面惯性矩:

截面下半部中和轴的面积矩:

剪应q力:

<

(安全)。

例表1-4

主要端部截面的几何特性

A

y=y´

-y

-34.1

122790

-32.5

33800

80×

43.2

3456

8.5

5780

84.2

6736

49.5

196020

297.6

10325.8

358390

3.翼缘焊缝

翼缘焊缝厚度hf按受力最大的支承端截面计算。

最大剪力Vmax=793.8kN.截面惯性矩I=401000cm4。

上翼缘对中和轴的面积矩

下翼缘对中和轴的面积矩

需要

角焊缝最小厚度hf1.5.所以全梁的上下翼缘焊缝都采用hf=8mm.

4.腹板的加劲肋和局部稳定验算

加劲肋的布置:

因为,故需设置横向加劲肋,以保证腹板的局部稳定性。

因闸门上已布置横向隔板兼作加劲肋,其间距a=160cm。

腹板区格划如图,梁高与弯矩都较大的区格Ⅱ可按下式计算

区格Ⅱ左边及右边截面的剪力分别为

区格Ⅱ截面的平均剪力为

区格Ⅱ左边及右边截面上的弯矩分别为

区格Ⅱ的平均弯矩为

区格Ⅱ的平均弯应力为

计算

计算,由于区格Ⅱ长短边之比为2.35/1.0,则

不计局部压应力,满足局部稳定要求,故在横隔板之间(区格Ⅱ)不必增加横向加劲肋。

再从剪力最大的区格Ⅰ来考虑:

该区格的腹板平均高度,因,不必验算,故在梁高减小的区格Ⅰ内也不必另设横向加劲肋。

5.面板局部弯曲与主梁整体弯曲的折算应力的验算

从上述的面板计算可见,直接与主梁相邻的面板区格,只有区格6所需板厚度较大,这意味着该区格的长边中点应力也较大,所以选取区格6(图1-2),并验算其长边中点的折算应力。

面板区格6在长边中点的局部弯曲应力:

对应于面板区格6在长边中点的主梁弯矩(图5)和弯应力:

面板区格3的长边中点的折算应力

上式中、、的取值均以拉应力为正号,压应力为负号。

故面板厚度选用8mm,满足强度要求。

六、横隔板设计

1.荷载和内力计算

横隔板同时兼做竖直次梁,它主要承受水平次梁、顶梁和底梁传来的集中荷载以及面板传来的分布荷载,计算时可把这些荷载用以三角形分布的水压力来代替(见图1-9),并且把横隔板作为支撑在主梁上的双悬臂梁。

则每片横隔板在上悬臂的最大负弯矩为

2.横隔板截面选择和强度计算

其腹板选用与主梁腹板同高,采用1000mm×

8mm,上翼缘利用面板,下翼缘采用200mm×

8mm的扁钢,

上翼缘利用面板的宽度按B=ξ2b确定,其中b=1600mm,按/b=2×

740/1600=0.925,从查7.1表可得有效宽度系数ξ2=0.4,则B=0.4*1600=640mm,取B=640mm

如图1-9,截面形心到腹板中心线的距离:

截面惯矩:

截面模量:

验算弯应力:

由于横隔板截面高度较大,剪切强度更不必验算,横隔板翼缘焊缝采用最小焊缝厚度=6mm。

例图1-9横隔板截面(单位:

七、纵向连接系设计

1.载荷和内力计算

纵向连接系承受闸门自重。

露顶式平面钢闸门G按附录十一式计算:

下游纵向连接系承受0.4G=0.4×

64.8=26kN

纵向连接系是做简支的平面桁架,其桁架腹杆布置如图1-10,其节点荷载为

2.斜杆截面计算

斜杆承受最大拉力N=13.8N,同时考虑闸门偶然扭曲是可能承受压力,故长细比的限制值应与压杆相同,即。

选用单角钢∟100×

8,由附录三表查得:

例图1-10纵向连接系计算图(单位:

截面面积A=1560㎜2;

回转半径iy0=19.8mm

斜杆计算长度

长细比

验算拉杆强度:

考虑单角钢受力偏心的影响,将容许应力降低15%进行强度验算。

八、边梁设计

边梁的截面形式采用双腹式(如图1-11),边梁的截面尺按照构造要求确定,即截面高度与主梁端部高度相同,腹板厚度与主梁腹板厚度相同,为了便于安装滚轮,两个下翼缘宽度不应小于300mm。

边梁是闸门的重要受力构件,由于受力情况复杂,故在设计师将容许应力值降低20%作为考虑受扭影响的安全储备。

在闸门每侧边梁上各设两个胶木滑块。

其布置尺寸可见例图1-12。

例图1-11边梁截面(单位:

mm)例图1-12边梁计算图

(1)水平荷载。

边梁所受的水平荷载主要是主梁传来的水平荷载及水平次梁、顶梁传来的水平荷载。

为了简化计算,可假设这些荷载完全是由主梁传给边梁。

每根主梁作用于边梁的集中荷载R=793.8kN。

(2)竖向荷载。

边梁所受的竖向荷载包括:

闸门自重、滑道摩擦力、止水摩擦力、起吊力等。

如图所示,可计算出上滑块所受的压力为

下滑块所受压力

边梁最大弯矩

最大剪力

最大轴向力为作用在一个边梁上的起吊力,估计为500kN。

在最大弯矩作用的截面上的轴向力,等于起吊力减去上滑块的摩擦力,该轴向力为

2.边梁的强度验算

截面面积A=800×

10+2×

400×

20=16800(mm2)

面积矩

截面惯性矩

截面模量

截面边缘最大应力验算:

腹板最大剪应力验算:

腹板与下翼缘连接处应力验算:

以上的验算满足强度要求。

九、行走支承设计

胶木滑块计算:

滑块位置如图1-12所示,下滑块受力最大,其值R2=932kN,设滑块长度为400mm,则滑块单位长度的承压力为。

根据上述q值由表7.2查得轨顶弧面半径R=200mm,轨头设计宽度b=40mm,胶木滑道与轨顶弧面的接触应力按下式进行验算:

选定胶木高30mm,宽120mm,长400mm。

十、胶木滑块轨道设计

1.确定轨道底板宽度

轨道底板宽度按混泥土承压强度决定。

根据C20号混泥土的容许承压应力值为,则所需的轨道底板宽度为

故轨道底面压应力为

2.确定轨道底板厚度

例图1-13胶木滑块支承轨道截面(单位:

轨道底板厚度δ按其弯曲强度确定。

轨道底板的最大弯应力

式中轨道底板的悬臂长度c=155mm,对于Q235钢,查得。

故所需轨道底板厚度为

十一、闸门启闭力和吊耳计算

1.启门力计算

其中闸门自重

G=64.8kN

滑道摩阻力

止水摩阻力

因橡皮止水与钢板间摩擦系数

f=0.65

橡皮止水受压宽度取为

b=0.06m

每边侧止水受压长度

H=6.0m

侧止水平均压强

p=88.2kN/m2

下吸力Px底止水橡皮采用I110-16型,其规格为宽16mm,长110mm。

底止水沿门跨长16.4m,根据SL74-95修订稿:

启门时闸门底缘平均下吸强度一般按20KN/㎡计算,则下吸力:

例图1-14吊轴和吊耳板(单位:

故闸门的启门力:

2.闭门力计算

显然仅靠闸门自重是不能关闭闸门的。

为此,我考虑采用一个重量800kN的加载梁,在闭门时可以依次对需要关闭的闸门加载下压关闭。

3.吊轴和吊耳板验算

(1)吊轴。

由于采用双腹式边梁,采用Q235钢,由表查得,采用双吊点,每边起吊力为

吊轴每边剪力

需要吊轴截面积

故吊轴直径

取d=100mm

(2)吊耳板强度验算。

按局部紧接承压条件,吊耳板需要厚度按下式计算。

由表查得Q235钢的,故

因此在边梁腹板上端部各焊一块厚度为40mm的轴承板。

轴承板采用圆形,其直径取为D=3d=3×

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2