立体光照成型的注塑模具工艺的综合模拟外文文献翻译中英文翻译外文翻译Word文档下载推荐.docx

上传人:b****2 文档编号:4783390 上传时间:2023-05-04 格式:DOCX 页数:33 大小:218.20KB
下载 相关 举报
立体光照成型的注塑模具工艺的综合模拟外文文献翻译中英文翻译外文翻译Word文档下载推荐.docx_第1页
第1页 / 共33页
立体光照成型的注塑模具工艺的综合模拟外文文献翻译中英文翻译外文翻译Word文档下载推荐.docx_第2页
第2页 / 共33页
立体光照成型的注塑模具工艺的综合模拟外文文献翻译中英文翻译外文翻译Word文档下载推荐.docx_第3页
第3页 / 共33页
立体光照成型的注塑模具工艺的综合模拟外文文献翻译中英文翻译外文翻译Word文档下载推荐.docx_第4页
第4页 / 共33页
立体光照成型的注塑模具工艺的综合模拟外文文献翻译中英文翻译外文翻译Word文档下载推荐.docx_第5页
第5页 / 共33页
立体光照成型的注塑模具工艺的综合模拟外文文献翻译中英文翻译外文翻译Word文档下载推荐.docx_第6页
第6页 / 共33页
立体光照成型的注塑模具工艺的综合模拟外文文献翻译中英文翻译外文翻译Word文档下载推荐.docx_第7页
第7页 / 共33页
立体光照成型的注塑模具工艺的综合模拟外文文献翻译中英文翻译外文翻译Word文档下载推荐.docx_第8页
第8页 / 共33页
立体光照成型的注塑模具工艺的综合模拟外文文献翻译中英文翻译外文翻译Word文档下载推荐.docx_第9页
第9页 / 共33页
立体光照成型的注塑模具工艺的综合模拟外文文献翻译中英文翻译外文翻译Word文档下载推荐.docx_第10页
第10页 / 共33页
立体光照成型的注塑模具工艺的综合模拟外文文献翻译中英文翻译外文翻译Word文档下载推荐.docx_第11页
第11页 / 共33页
立体光照成型的注塑模具工艺的综合模拟外文文献翻译中英文翻译外文翻译Word文档下载推荐.docx_第12页
第12页 / 共33页
立体光照成型的注塑模具工艺的综合模拟外文文献翻译中英文翻译外文翻译Word文档下载推荐.docx_第13页
第13页 / 共33页
立体光照成型的注塑模具工艺的综合模拟外文文献翻译中英文翻译外文翻译Word文档下载推荐.docx_第14页
第14页 / 共33页
立体光照成型的注塑模具工艺的综合模拟外文文献翻译中英文翻译外文翻译Word文档下载推荐.docx_第15页
第15页 / 共33页
立体光照成型的注塑模具工艺的综合模拟外文文献翻译中英文翻译外文翻译Word文档下载推荐.docx_第16页
第16页 / 共33页
立体光照成型的注塑模具工艺的综合模拟外文文献翻译中英文翻译外文翻译Word文档下载推荐.docx_第17页
第17页 / 共33页
立体光照成型的注塑模具工艺的综合模拟外文文献翻译中英文翻译外文翻译Word文档下载推荐.docx_第18页
第18页 / 共33页
立体光照成型的注塑模具工艺的综合模拟外文文献翻译中英文翻译外文翻译Word文档下载推荐.docx_第19页
第19页 / 共33页
立体光照成型的注塑模具工艺的综合模拟外文文献翻译中英文翻译外文翻译Word文档下载推荐.docx_第20页
第20页 / 共33页
亲,该文档总共33页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

立体光照成型的注塑模具工艺的综合模拟外文文献翻译中英文翻译外文翻译Word文档下载推荐.docx

《立体光照成型的注塑模具工艺的综合模拟外文文献翻译中英文翻译外文翻译Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《立体光照成型的注塑模具工艺的综合模拟外文文献翻译中英文翻译外文翻译Word文档下载推荐.docx(33页珍藏版)》请在冰点文库上搜索。

立体光照成型的注塑模具工艺的综合模拟外文文献翻译中英文翻译外文翻译Word文档下载推荐.docx

KeywordsInjectionmoldingNumericalsimulationRapidprototyping

1Introduction

Ininjectionmolding,thepolymermeltathightemperatureisinjectedintothemoldunderhighpressure[1].Thus,themoldmaterialneedstohavethermalandmechanicalpropertiescapableofwithstandingthetemperaturesandpressuresofthemoldingcycle.Thefocusofmanystudieshasbeentocreatethe

injectionmolddirectlybyarapidprototyping(RP)process.Byeliminatingmultiplesteps,thismethodoftoolingholdsthebestpromiseofreducingthetimeandcostneededtocreatelow-volumequantitiesofpartsinaproductionmaterial.ThepotentialofintegratinginjectionmoldingwithRPtechnologieshasbeendemonstratedmanytimes.ThepropertiesofRPmoldsareverydifferentfromthoseoftraditionalmetalmolds.Thekeydifferencesarethepropertiesofthermalconductivityandelasticmodulus(rigidity).Forexample,thepolymersusedinRP-fabricatedstereolithography(SL)moldshaveathermalconductivitythatislessthanonethousandththatofanaluminumtool.InusingRPtechnologiestocreatemolds,theentiremolddesignandinjection-moldingprocessparametersneedtobemodifiedandoptimizedfromtraditionalmethodologiesduetothecompletelydifferenttoolmaterial.However,thereisstillnotafundamentalunderstandingofhowthemodificationstothemoldtoolingmethodandmaterialimpactboththemolddesignandtheinjectionmoldingprocessparameters.Onecannotobtainreasonableresultsbysimplychangingafewmaterialpropertiesincurrentmodels.Also,usingtraditionalapproacheswhenmakingactualpartsmaybegeneratingsub-optimalresults.Sothereisadireneedtostudytheinteractionbetweentherapidtooling(RT)processandmaterialandinjectionmolding,soastoestablishthemolddesigncriteriaandtechniquesforanRT-orientedinjectionmoldingprocess.

Inaddition,computersimulationisaneffectiveapproachforpredictingthequalityofmoldedparts.Commerciallyavailablesimulationpackagesofthetraditionalinjectionmoldingprocesshavenowbecomeroutinetoolsofthemolddesignerandprocessengineer[2].Unfortunately,currentsimulationprogramsforconventionalinjectionmoldingarenolongerapplicabletoRPmolds,becauseofthedramaticallydissimilartoolmaterial.Forinstance,inusingtheexistingsimulationsoftwarewithaluminumandSLmoldsandcomparingwithexperimentalresults,thoughthesimulationvaluesofpartdistortionarereasonableforthealuminummold,resultsareunacceptable,withtheerrorexceeding50%.Thedistortionduringinjectionmoldingisduetoshrinkageandwarpageoftheplasticpart,aswellasthemold.Forordinarilymolds,themainfactoristheshrinkageandwarpageoftheplasticpart,whichismodeledaccuratelyincurrentsimulations.ButforRPmolds,thedistortionofthemoldhaspotentiallymoreinfluence,whichhavebeenneglectedincurrentmodels.Forinstance,[3]usedasimplethree-stepsimulationprocesstoconsiderthemolddistortion,whichhadtoomuchdeviation.

Inthispaper,basedontheaboveanalysis,anewsimulationsystemforRPmoldsisdeveloped.Theproposedsystemfocusesonpredictingpartdistortion,whichisdominatingdefectinRP-moldedparts.ThedevelopedsimulationcanbeappliedasanevaluationtoolforRPmolddesignandprocessoptimization.Oursimulationsystemisverifiedbyanexperimentalexample.

AlthoughmanymaterialsareavailableforuseinRPtechnologies,weconcentrateonusingstereolithography(SL),theoriginalRPtechnology,tocreatepolymermolds.TheSLprocessusesphotopolymerandlaserenergytobuildapartlayerbylayer.UsingSLtakesadvantageofboththecommercialdominanceofSLintheRPindustryandthesubsequentexpertisebasethathasbeendevelopedforcreatingaccurate,high-qualityparts.Untilrecently,SLwasprimarilyusedtocreatephysicalmodelsforvisualinspectionandform-fitstudieswithverylimitedfunctionalapplications.However,thenewergenerationstereolithographicphotopolymershaveimproveddimensional,mechanicalandthermalpropertiesmakingitpossibletousethemforactualfunctionalmolds.

2Integratedsimulationofthemoldingprocess

2.1Methodology

InordertosimulatetheuseofanSLmoldintheinjectionmoldingprocess,aniterativemethodisproposed.Differentsoftwaremoduleshavebeendevelopedandusedtoaccomplishthistask.ThemainassumptionisthattemperatureandloadboundaryconditionscausesignificantdistortionsintheSLmold.Thesimulationstepsareasfollows:

1Thepartgeometryismodeledasasolidmodel,whichistranslatedtoafilereadablebytheflowanalysispackage.

2Simulatethemold-fillingprocessofthemeltintoaphotopolymermold,whichwilloutputtheresultingtemperatureandpressureprofiles.

3Structuralanalysisisthenperformedonthephotopolymermoldmodelusingthethermalandloadboundaryconditionsobtainedfromthepreviousstep,whichcalculatesthedistortionthatthemoldundergoduringtheinjectionprocess.

4Ifthedistortionofthemoldconverges,movetothenextstep.Otherwise,thedistortedmoldcavityisthenmodeled(changesinthedimensionsofthecavityafterdistortion),andreturnstothesecondsteptosimulatethemeltinjectionintothedistortedmold.

5Theshrinkageandwarpagesimulationoftheinjectionmoldedpartisthenapplied,whichcalculatesthefinaldistortionsofthemoldedpart.

Inabovesimulationflow,therearethreebasicsimulationmodules.

2.2Fillingsimulationofthemelt

2.2.1Mathematicalmodeling

InordertosimulatetheuseofanSLmoldintheinjectionmoldingprocess,aniterativemethodisproposed.Differentsoftwaremoduleshavebeendevelopedandusedtoaccomplishthistask.ThemainassumptionisthattemperatureandloadboundaryconditionscausesignificantdistortionsintheSLmold.Thesimulationstepsareasfollows:

1.Thepartgeometryismodeledasasolidmodel,whichistranslatedtoafilereadablebytheflowanalysispackage.

2.Simulatethemold-fillingprocessofthemeltintoaphotopolymermold,whichwilloutputtheresultingtemperatureandpressureprofiles.

3.Structuralanalysisisthenperformedonthephotopolymermoldmodelusingthethermalandloadboundaryconditionsobtainedfromthepreviousstep,whichcalculatesthedistortionthatthemoldundergoduringtheinjectionprocess.

4.Ifthedistortionofthemoldconverges,movetothenextstep.Otherwise,thedistortedmoldcavityisthenmodeled(changesinthedimensionsofthecavityafterdistortion),andreturnstothesecondsteptosimulatethemeltinjectionintothedistortedmold.

5.Theshrinkageandwarpagesimulationoftheinjectionmoldedpartisthenapplied,whichcalculatesthefinaldistortionsofthemoldedpart.

Inabovesimulationflow,therearethreebasicsimulationmodules.

2.2Fillingsimulationofthemelt

2.2.1Mathematicalmodeling

Computersimulationtechniqueshavehadsuccessinpredictingfillingbehaviorinextremelycomplicatedgeometries.However,mostofthecurrentnumericalimplementationisbasedonahybridfinite-element/finite-differencesolutionwiththemiddleplanemodel.TheapplicationprocessofsimulationpackagesbasedonthismodelisillustratedinFig.2-1.However,unlikethesurface/solidmodelinmold-designCADsystems,theso-calledmiddle-plane(asshowninFig.2-1b)isanimaginaryarbitraryplanargeometryatthemiddleofthecavityinthegap-wisedirection,whichshouldbringaboutgreatinconvenienceinapplications.Forexample,surfacemodelsarecommonlyusedincurrentRPsystems(generallySTLfileformat),sosecondarymodelingisunavoidablewhenusingsimulationpackagesbecausethemodelsintheRPandsimulationsystemsaredifferent.Consideringthesedefects,thesurfacemodelofthecavityisintroducedasdatumplanesinthesimulation,insteadofthemiddle-plane.

Accordingtothepreviousinvestigations[4–6],fillinggoverningequationsfortheflowandtemperaturefieldcanbewrittenas:

wherex,yaretheplanarcoordinatesinthemiddle-plane,andzisthegap-wisecoordinate;

u,v,warethevelocitycomponentsinthex,y,zdirections;

u,varetheaveragewhole-gapthicknesses;

andη,ρ,CP(T),K(T)representviscosity,density,specificheatandthermalconductiv

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2