精品环境工程专业英语文献中英双语版Word格式文档下载.docx

上传人:b****1 文档编号:5238369 上传时间:2023-05-04 格式:DOCX 页数:24 大小:259.60KB
下载 相关 举报
精品环境工程专业英语文献中英双语版Word格式文档下载.docx_第1页
第1页 / 共24页
精品环境工程专业英语文献中英双语版Word格式文档下载.docx_第2页
第2页 / 共24页
精品环境工程专业英语文献中英双语版Word格式文档下载.docx_第3页
第3页 / 共24页
精品环境工程专业英语文献中英双语版Word格式文档下载.docx_第4页
第4页 / 共24页
精品环境工程专业英语文献中英双语版Word格式文档下载.docx_第5页
第5页 / 共24页
精品环境工程专业英语文献中英双语版Word格式文档下载.docx_第6页
第6页 / 共24页
精品环境工程专业英语文献中英双语版Word格式文档下载.docx_第7页
第7页 / 共24页
精品环境工程专业英语文献中英双语版Word格式文档下载.docx_第8页
第8页 / 共24页
精品环境工程专业英语文献中英双语版Word格式文档下载.docx_第9页
第9页 / 共24页
精品环境工程专业英语文献中英双语版Word格式文档下载.docx_第10页
第10页 / 共24页
精品环境工程专业英语文献中英双语版Word格式文档下载.docx_第11页
第11页 / 共24页
精品环境工程专业英语文献中英双语版Word格式文档下载.docx_第12页
第12页 / 共24页
精品环境工程专业英语文献中英双语版Word格式文档下载.docx_第13页
第13页 / 共24页
精品环境工程专业英语文献中英双语版Word格式文档下载.docx_第14页
第14页 / 共24页
精品环境工程专业英语文献中英双语版Word格式文档下载.docx_第15页
第15页 / 共24页
精品环境工程专业英语文献中英双语版Word格式文档下载.docx_第16页
第16页 / 共24页
精品环境工程专业英语文献中英双语版Word格式文档下载.docx_第17页
第17页 / 共24页
精品环境工程专业英语文献中英双语版Word格式文档下载.docx_第18页
第18页 / 共24页
精品环境工程专业英语文献中英双语版Word格式文档下载.docx_第19页
第19页 / 共24页
精品环境工程专业英语文献中英双语版Word格式文档下载.docx_第20页
第20页 / 共24页
亲,该文档总共24页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

精品环境工程专业英语文献中英双语版Word格式文档下载.docx

《精品环境工程专业英语文献中英双语版Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《精品环境工程专业英语文献中英双语版Word格式文档下载.docx(24页珍藏版)》请在冰点文库上搜索。

精品环境工程专业英语文献中英双语版Word格式文档下载.docx

DarrellL.Gallup∗

ChevronCorporation,EnergyTechnologyCompany,3901BriarparkDr.,Houston,Texas77042,USA

Received14March2007;

accepted16July2007

Availableonline12September2007

Abstract

Aconceptualstudyhasbeencarriedouttoconvertgeothermalwaterandcondensateintoavaluableindustrial,agriculturalordrinkingwaterresource.Laboratoryandfieldpilotteststudieswereusedfortheconceptualdesignsandpreliminarycostestimates,referredtotreatmentfacilitieshandling750kg/sofgeothermalwaterand350kg/sofsteamcondensate.Theexperimentsdemonstratedthatindustrial,agriculturalanddrinkingwaterstandardscouldprobablybemetbyadoptingcertainoperatingconditions.Sixdifferenttreatmentswereexamined.Unitprocessesforgeothermalwater/condensatetreatmentincludedesilicationofthewaterstoproducemarketableminerals,removalofdissolvedsolidsbyreverseosmosisorevaporation,removalofarsenicbyoxidation/precipitation,andremovalofboronbyvariousmethodsincludingionexchange.Thetotalprojectcostestimates,withanaccuracyofapproximately±

25%,rangedfromUS$10to78millionincapitalcost,withanoperationandmaintenance(orproduct)costrangingfromUS$0.15to2.73m−3oftreatedwater.

©

2007CNR.PublishedbyElsevierLtd.Allrightsreserved.

Keywords:

Geothermalwatertreatment;

Waterresources;

Desilication;

Arsenic;

Boron

1.Introduction

Withtheworldenteringanageofwatershortagesandaridfarmingland,itisincreasinglyimportantthatwefindwaysofrecyclingwastewater.Theoil,gasandgeothermalindustries,forexample,extractmassiveamountsofbrineandwaterfromthesubsurface,mostofwhichareinjectedbackintoundergroundformations.Holisticapproachestowatermanagementarebeingadoptedevermorefrequently,andproducedwaterisnowbeingconsideredasapotentialresource.Intheoilandgasarena,attemptshavebeenmadetoconvertproducedwaterfordrinkingsupplyorotherreuses(Doranetal.,1998).Turningoilfield-producedwaterintoavaluableresourceentailsanunderstandingoftheenvironmentalandeconomicimplications,andofthetechniquesrequiredtoremovedissolvedorganicandinorganiccomponentsfromthewaters.Treatmentsofgeothermalwaterandcondensateforbeneficialuse,ontheotherhand,involvetheremovalofinorganiccomponentsonly.

Wehaveexploredthetechnicalandeconomicfeasibilityofreusingwatersandsteamcondensatesfromexistingandfuturegeothermalpowerplants.Producedgeothermalfluids,especiallyinaridclimates,shouldbeviewedasvaluableresourcesforindustryandagriculture,aswellasfordrinkingwatersupplies.Thispaperpresentstheresultsoflaboratoryandfieldpilotstudiesdesignedtoconvertgeothermal-producedfluidsintobeneficiallyusablewater.Thepreliminaryeconomicsofseveralwatertreatmentstrategiesarealsoprovided.

2.Designlayout

Thelayoutforthetreatmentstrategies(unitsofoperation)havebeendesignedspecificallyforanominal50Mwegeothermalpowerplantlocatedinanaridclimateofthewesternhemisphere,hereafterreferredtoasthetestplant.TheaverageconcentrationofconstituentsintheproducedwaterisshowninTable1.Theamountofspentwaterfromthetestflashplantis∼750kg/s.Thepotentialamountofsteamcondensatethatcouldbeproducedattheplantis∼350kg/s.Table1includesthecompositionofthesteamcondensatederivedfromwelltests.ThesixtreatmentcasesconsideredinthestudyaregiveninTable2,togetherwithproductflowsandunitoperationsoftreatment.Fig.1providessimplifiedschematiclayoutsoftheunitoperationsforeachcase.

3.Evaluationoftreatmentoptions

Inthissectionthevariousoperationsconsideredforeachcasearedescribed.

3.1.Arsenicremoval

Thetechniquesconsideredviableforremovingtracesofarsenic(As)fromcondensateorfromwaterareozoneoxidationfollowedbyironco-precipitationorcatalyzedphoto-oxidationprocesses(Khoeetal.,1997).OtherprocessesforextractingAsfromgeothermalwaters(e.g.RothbaumandAnderton,1975;

UmenoandIwanaga,1998;

Pascuaetal.,2007)havenotbeenconsideredinthepresentstudy.Inthecaseofthetestplant,ozone(O3)wouldbegeneratedon-siteusingparasiticpower,airandcorona-dischargeultra-violet(UV)lamps,andironintheformofferricsulfate[Fe2(SO4)3]orferricchloride(FeCl3)thatwouldbedeliveredtothegeothermalplant.Thephoto-oxidationprocessesconsistoftreatingthecondensateorwaterwithFe2+intheformofferroussulfate(FeSO4)orferrouschloride(FeCl2),orwithSO2photoabsorbers.ThelatterisgeneratedfromtheoxidationofH2Sinturbineventgas(KitzandGallup,1997).

Thephoto-oxidationprocessconsistsofspargingairthroughthephoto-adsorber-treatedfluid,andthenirradiatingitwithUVlampsorexposingittosunlighttooxidizeAs3+toAs5+.IntheFephoto-oxidationmode,theFe2+isoxidizedtoFe3+,whichnotonlycatalyzestheoxidationreaction,butalsoco-precipitatestheAs.IntheSO2photo-oxidationmode,afteroxidizingtheAs,FeCl3orFe2(SO4)3isaddedtothewatertoprecipitatetheAs5+asascorodite-likemineral

Table1

Approximategeothermalwaterandsteamcondensatecompositionsassumedinthestudy

aTotaldissolvedsolids.

Table2

Summaryofthesixcasesofgeothermalfluidtreatmenttoproducemarketablewater

aOntreatmentofwater,claysareproducedatarateof7.4ton/h.

(FeAsO4·

2H2O).Inthelaboratoryandfieldpilottests,thephoto-absorberandUVdosageswerevariedtodecreasetheAsconcentrationingeothermalfluidstobelowthedetectionlimitof2ppb(Simmonsetal.,2002).ResidualAsintheprecipitatemaybeslurry-injectedintoawaterdisposalwellorfixed/stabilizedforlanddisposaltomeetUnitedStatesEnvironmentalProtectionAgency(USEPA)ToxicityCharacterizationLeachProcedure(TCLP)limitsusingspecialcementformulations(Allen,1996).

3.2.Ionexchange

Strong-baseanionexchangeresinshavebeenshowntoremovetracesofAsingeothermalfluidsprovidedthattheamorphoussilicaisdecreasedbelowitssaturationpointorthewaterstabilizedagainstsilicascalingbyacidification.TheionexchangealternativetoAsremovalbyoxidation/precipitationhasprovensuccessfulinreducingtheconcentrationsofthiselementtobelowthelimitssetfordrinkingwaterstandards.Aspartofthepresentstudy,laboratoryandfieldcolumnartestsweresuccessfullyconductedwithgeothermalhotspringwatercontaining30ppmAs.Pre-oxidationofAs3+isrequiredtoachieveacceptableAsremovalbyionexchange.Inthesecolumnartests,NaOClandH2O2wereusedtopre-treatthehotspringwatertooxidizeAs3+toAs5+.Chloride-richwater,whichhadbeentreatedwithlime(CaOH2)andfilteredtoreduceamorphoussilicatowellbelowitssaturationpoint,successfullyregeneratedtheresin.Inthefield,andforsimplicityofoperation,weconcludedthatozone/Feco-precipitationorcatalyzedphoto-oxidationwouldbepreferredforwatertreatmentoverionexchangeasthiswouldeliminatetheneedtopurchaseandtransportadditionalchemicals.Ontheotherhand,ionexchangeisanattractiveoptionforextractingAsfromcondensate.

Specialion-exchangeresinshaveprovensuccessfulinremovingboron(B)fromgeothermalfluids(RecepogluandBeker,1991;

Gallup,1995).Hotspringwaterfromthegeothermalfield,containing25ppmB,haditsBcontentdecreasedto<

1ppminalaboratorycolumnartest.Theresinwasregeneratedwithsulfuricacid(H2SO4).Nodeteriorationinresinperformancewasobservedupto10loadingandregenerationcycles.

Fig.1.Flowchartofthebasicunitoperationsinvolvedintreatmentcases1–6.

3.3.pHadjustment

ThemajorityofthecasesconsideredinthisstudyrequireadjustmenttopH.Addingsodaash(Na2CO3)canincreasethebufferingcapacityofthewaterandcondensate.Sodaashorlimetreatmentcanalsobeusedtoenhanceprecipitationofcertainspecies.PurchasedH2SO4,on-sitegeneratedsulfurousacid(H2SO3)oron-sitegeneratedhydrochloricacid(HCl)canbeusedtoacidifywaterstomeetreuserequirementsortoinhibitsilicascaling(Hirowatari,1996;

KitzandGallup,1997;

Gallup,2002).Anumberofgeothermalpowerplantsaroundtheworldutilizewateracidificationtoinhibitsilicascaling.UnocalCorporationcommencedthispracticeofpHadjustmentofhotandcoldgeothermalfluidsincommercialoperationsintheearly1980s(JostandGallup,1985;

Gallupetal.,1993;

Gallup,1996).InwateracidificationthepHisreducedslightlysoastoslowdownthesilicapolymerizationreactionkineticswithoutsignificantlyincreasingcorrosionrates.

3.4.Coolingponds

Inthiswaterprocessingoption,thewateriscooledinopen,linedpondspriortoinjectionortreatmentforbeneficialuse.Theflashedwaterisallowedtoflowintothepondwhereit“ages”forupto3days;

thisisasufficientlengthoftimetoachieveamorphoussilicasaturationatambienttemperature,whichisassumedtobebelow20◦Cmostoftheyear.AdjustmentofthewaterpHto8.0±

0.5withsodaashorlimeenhanceswaterdesilication,resultinginundersaturationwithrespecttoamorphoussilica(Gallupetal.,2003).At15◦C,thesolubilityofamorphoussilicainthewaterinourtestfieldispredictedtobeabout90ppm(FournierandMarshall,1983).Inalargebottle,fieldwaterwasadjustedfrompH7.2to8.1withsodaashandallowedtocoolto15◦Coveraperiodof90min.Theresultantdissolvedsilica[Si(OH)4]concentrationinthesupernatantfluidwas54ppm(undersaturatedby

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > PPT模板 > 商务科技

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2