建筑给排水 外文文献翻译1.docx

上传人:b****3 文档编号:5435722 上传时间:2023-05-08 格式:DOCX 页数:42 大小:1.76MB
下载 相关 举报
建筑给排水 外文文献翻译1.docx_第1页
第1页 / 共42页
建筑给排水 外文文献翻译1.docx_第2页
第2页 / 共42页
建筑给排水 外文文献翻译1.docx_第3页
第3页 / 共42页
建筑给排水 外文文献翻译1.docx_第4页
第4页 / 共42页
建筑给排水 外文文献翻译1.docx_第5页
第5页 / 共42页
建筑给排水 外文文献翻译1.docx_第6页
第6页 / 共42页
建筑给排水 外文文献翻译1.docx_第7页
第7页 / 共42页
建筑给排水 外文文献翻译1.docx_第8页
第8页 / 共42页
建筑给排水 外文文献翻译1.docx_第9页
第9页 / 共42页
建筑给排水 外文文献翻译1.docx_第10页
第10页 / 共42页
建筑给排水 外文文献翻译1.docx_第11页
第11页 / 共42页
建筑给排水 外文文献翻译1.docx_第12页
第12页 / 共42页
建筑给排水 外文文献翻译1.docx_第13页
第13页 / 共42页
建筑给排水 外文文献翻译1.docx_第14页
第14页 / 共42页
建筑给排水 外文文献翻译1.docx_第15页
第15页 / 共42页
建筑给排水 外文文献翻译1.docx_第16页
第16页 / 共42页
建筑给排水 外文文献翻译1.docx_第17页
第17页 / 共42页
建筑给排水 外文文献翻译1.docx_第18页
第18页 / 共42页
建筑给排水 外文文献翻译1.docx_第19页
第19页 / 共42页
建筑给排水 外文文献翻译1.docx_第20页
第20页 / 共42页
亲,该文档总共42页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

建筑给排水 外文文献翻译1.docx

《建筑给排水 外文文献翻译1.docx》由会员分享,可在线阅读,更多相关《建筑给排水 外文文献翻译1.docx(42页珍藏版)》请在冰点文库上搜索。

建筑给排水 外文文献翻译1.docx

建筑给排水外文文献翻译1

 

 

本科毕业设计

外文文献及译文

 

文献、资料题目:

Sealedbuildingdrainage

andventsystems

文献、资料来源:

国道数据库

文献、资料发表(出版)日期:

2005.9.12

院(部):

市政与环境工程学院

专业:

给水排水工程

班级:

姓名:

学号:

指导教师:

翻译日期:

2012.06

外文文献:

Sealedbuildingdrainageandventsystems

—anapplicationofactiveairpressuretransientcontrolandsuppression

Abstract

Theintroductionofsealedbuildingdrainageandventsystemsisconsideredaviablepropositionforcomplexbuildingsduetotheuseofactivepressuretransientcontrolandsuppressionintheformofairadmittancevalvesandpositiveairpressureattenuatorscoupledwiththeinterconnectionofthenetwork'sverticalstacks.

Thispaperpresentsasimulationbasedonafour-stacknetworkthatillustratesflowmechanismswithinthepipeworkfollowingbothappliancedischargegenerated,andsewerimposed,transients.Thissimulationidentifiestheroleoftheactiveairpressurecontroldevicesinmaintainingsystempressuresatlevelsthatdonotdepletetrapseals.

Furthersimulationexerciseswouldbenecessarytoprovideproofofconcept,anditwouldbeadvantageoustoparallelthesewithlaboratory,andpossiblysite,trialsforvalidationpurposes.Despitethiscautiontheinitialresultsarehighlyencouragingandaresufficienttoconfirmthepotentialtoprovidedefinitebenefitsintermsofenhancedsystemsecurityaswellasincreasedreliabilityandreducedinstallationandmaterialcosts.

Keywords:

Activecontrol;Trapretention;Transientpropagation

Nomenclature

C+-——characteristicequations

c——wavespeed,m/s

D——branchorstackdiameter,m

f——frictionfactor,UKdefinitionviaDarcyΔh=4fLu2/2Dg

g——accelerationduetogravity,m/s2

K——losscoefficient

L——pipelength,m

p——airpressure,N/m2

t——time,s

u——meanairvelocity,m/s

x——distance,m

γ——ratiospecificheats

Δh——headloss,m

Δp——pressuredifference,N/m2

Δt——timestep,s

Δx——internodallength,m

ρ——density,kg/m3

ArticleOutline

Nomenclature

1.Introduction—airpressuretransientcontrolandsuppression

2.Mathematicalbasisforthesimulationoftransientpropagationinmulti-stackbuildingdrainagenetworks

3.Roleofdiversityinsystemoperation

4.Simulationoftheoperationofamulti-stacksealedbuildingdrainageandventsystem

5.Simulationsignconventions

6.Waterdischargetothenetwork

7.Surchargeatbaseofstack1

8.Sewerimposedtransients

9.Trapsealoscillationandretention

10.Conclusion—viabilityofasealedbuildingdrainageandventsystem

1.Airpressuretransientsgeneratedwithinbuildingdrainageandventsystemsasanaturalconsequenceofsystemoperationmayberesponsiblefortrapsealdepletionandcrosscontaminationofhabitablespace[1].Traditionalmodesoftrapsealprotection,basedontheVictorianengineer'sobsessionwithodourexclusion[2],[3]and[4],dependpredominantlyonpassivesolutionswhererelianceisplacedoncrossconnectionsandverticalstacksventedto

atmosphere[5]and[6].Thisapproach,whilebothprovenandtraditional,hasinherentweaknesses,includingtheremotenessoftheventterminations[7],leadingtodelaysinthearrivalofrelievingreflections,andthemultiplicityofopenrooflevelstackterminationsinherentwithincomplexbuildings.Thecomplexityoftheventsystemrequiredalsohassignificantcostandspaceimplications[8].

Thedevelopmentofairadmittancevalves(AAVs)overthepasttwodecadesprovidesthedesignerwithameansofalleviatingnegativetransientsgeneratedasrandomappliancedischargescontributetothetimedependentwater-flowconditionswithinthesystem.AAVsrepresentanactivecontrolsolutionastheyresponddirectlytothelocalpressureconditions,openingaspressurefallstoallowareliefairinflowandhencelimitthepressureexcursionsexperiencedbytheappliancetrapseal[9].

However,AAVsdonotaddresstheproblemsofpositiveairpressuretransientpropagationwithinbuildingdrainageandventsystemsasaresultofintermittentclosureofthefreeairpaththroughthenetworkorthearrivalofpositivetransientsgeneratedremotelywithinthesewersystem,possiblybysomesurchargeeventdownstream—includingheavyrainfallincombinedsewerapplications.

Thedevelopmentofvariablevolumecontainmentattenuators[10]thataredesignedtoabsorbairflowdrivenbypositiveairpressuretransientscompletesthenecessarydeviceprovisiontoallowactiveairpressuretransientcontrolandsuppressiontobeintroducedintothedesignofbuildingdrainageandventsystems,forboth‘standard’buildingsandthoserequiringparticularattentiontobepaidtothesecurityimplicationsofmultiplerooflevelopenstackterminations.Thepositiveairpressureattenuator(PAPA)consistsofavariablevolumebagthatexpandsundertheinfluenceofapositivetransientandthereforeallowssystemairflowstoattenuategradually,thereforereducingthelevelofpositivetransientsgenerated.

TogetherwiththeuseofAAVstheintroductionofthePAPAdeviceallowsconsiderationofafullysealedbuildingdrainageandventsystem.

Fig.1illustratesbothAAVandPAPAdevices,notethatthewaterlesssheathtrapactsasanAAVundernegativelinepressure.

Fig.1.Activeairpressuretransientsuppressiondevicestocontrolbothpositiveandnegativesurges.

Activeairpressuretransientsuppressionandcontrolthereforeallowsforlocalizedinterventiontoprotecttrapsealsfrombothpositiveandnegativepressureexcursions.Thishasdistinctadvantagesoverthetraditionalpassiveapproach.Thetimedelayinherentinawaitingthereturnofarelievingreflectionfromaventopentoatmosphereisremovedandtheeffectofthetransientonalltheothersystemtrapspassedduringitspropagationisavoided.

2.Mathematicalbasisforthesimulationoftransientpropagationinmulti-stackbuildingdrainagenetworks.

ThepropagationofairpressuretransientswithinbuildingdrainageandventsystemsbelongstoawellunderstoodfamilyofunsteadyflowconditionsdefinedbytheStVenantequationsofcontinuityandmomentum,andsolvableviaafinitedifferenceschemeutilizingthemethodofcharacteristicstechnique.Airpressuretransientgenerationandpropagationwithinthesystemasaresultofairentrainmentbythefallingannularwaterinthesystemverticalstacksandthereflectionandtransmissionofthesetransientsatthesystemboundaries,includingopenterminations,connectionstothesewer,appliancetrapsealsandbothAAVandPAPAactivecontroldevices,maybesimulatedwithprovenaccuracy.Thesimulation[11]provideslocalairpressure,velocityandwavespeedinformationthroughoutanetworkattimeanddistanceintervalsasshortas0.001 sand300 mm.Inaddition,thesimulationreplicateslocalappliancetrapsealoscillationsandtheoperationofactivecontroldevices,therebyyieldingdataonnetworkairflowsandidentifyingsystemfailuresandconsequences.Whilethesimulationhasbeenextensivelyvalidated[10],itsusetoindependentlyconfirmthemechanismofSARSvirusspreadwithintheAmoyGardensoutbreakin2003hasprovidedfurtherconfidenceinitspredictions[12].

Airpressuretransientpropagationdependsupontherateofchangeofthesystemconditions.Increasingannulardownflowgeneratesanenhancedentrainedairflowandlowersthesystempressure.Retardingtheentrainedairflowgeneratespositivetransients.Externaleventsmayalsopropagatebothpositiveandnegativetransientsintothenetwork.

Theannularwaterflowinthe‘wet’stackentrainsanairflowduetotheconditionof‘noslip’establishedbetweentheannularwaterandaircoresurfacesandgeneratestheexpectedpressurevariationdownaverticalstack.Pressurefallsfromatmosphericabovethestackentryduetofrictionandtheeffectsofdrawingairthroughthewatercurtainsformedatdischargingbranchjunctions.Inthelowerwetstackthepressurerecoverstoaboveatmosphericduetothetractionforcesexertedontheairflowpriortofallingacrossthewatercurtainatthestackbase.

Theapplicationofthemethodofcharacteristicstothemodellingofunsteadyflowswasfirstrecognizedinthe1960s[13].TherelationshipsdefinedbyJack[14]allowsthesimulationtomodelthetractionforceexertedontheentrainedair.Extensiveexperimentaldataallowedthedefinitionofa‘pseudo-frictionfactor’applicableinthewetstackandoperableacrossthewaterannularflow/entrainedaircoreinterfacetoallowcombineddischargeflowsandtheireffectonairentrainmenttobemodelled.

ThepropagationofairpressuretransientsinbuildingdrainageandventsystemsisdefinedbytheStVenantequationsofcontinuityandmomentum[9],

(1)

(2)

Thesequasi-linearhyperbolicpartialdifferentialequationsareamenabletofinitedifferencesolutiononcetransformedviatheMethodofCharacteristicsintofinitedifferencerelationships,Eqs.(3)–(6),thatlinkconditionsatanodeonetimestepinthefuturetocurrentconditionsatadjacentupstreamanddownstreamnodes,Fig.2.

Fig.2.StVenantequationsofcontinuityandmomentumallowairflowvelocityandwavespeedtobepredictedonanx-tgridasshown.Note

.

FortheC+characteristic:

(3)

when

(4)

andtheC-characteristic:

(5)

when

(6)

wherethewavespeedcisgivenby

c=(γp/ρ)0.5.

(7)

Theseequationsinvolvetheairmeanflowvelocity,u,andthelocalwavespeed,c,duetotheinterdependenceofairpressureanddensity.Localpressureiscalculatedas

(8)

Suitableequationslinklocalpressuretoairflowortotheinterfaceoscillationoftrapseals.

Thecaseoftheappliancetrapsealisofparticularimportance.The

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2