现代检测技术作业概要.docx

上传人:b****4 文档编号:5599313 上传时间:2023-05-08 格式:DOCX 页数:24 大小:217.18KB
下载 相关 举报
现代检测技术作业概要.docx_第1页
第1页 / 共24页
现代检测技术作业概要.docx_第2页
第2页 / 共24页
现代检测技术作业概要.docx_第3页
第3页 / 共24页
现代检测技术作业概要.docx_第4页
第4页 / 共24页
现代检测技术作业概要.docx_第5页
第5页 / 共24页
现代检测技术作业概要.docx_第6页
第6页 / 共24页
现代检测技术作业概要.docx_第7页
第7页 / 共24页
现代检测技术作业概要.docx_第8页
第8页 / 共24页
现代检测技术作业概要.docx_第9页
第9页 / 共24页
现代检测技术作业概要.docx_第10页
第10页 / 共24页
现代检测技术作业概要.docx_第11页
第11页 / 共24页
现代检测技术作业概要.docx_第12页
第12页 / 共24页
现代检测技术作业概要.docx_第13页
第13页 / 共24页
现代检测技术作业概要.docx_第14页
第14页 / 共24页
现代检测技术作业概要.docx_第15页
第15页 / 共24页
现代检测技术作业概要.docx_第16页
第16页 / 共24页
现代检测技术作业概要.docx_第17页
第17页 / 共24页
现代检测技术作业概要.docx_第18页
第18页 / 共24页
现代检测技术作业概要.docx_第19页
第19页 / 共24页
现代检测技术作业概要.docx_第20页
第20页 / 共24页
亲,该文档总共24页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

现代检测技术作业概要.docx

《现代检测技术作业概要.docx》由会员分享,可在线阅读,更多相关《现代检测技术作业概要.docx(24页珍藏版)》请在冰点文库上搜索。

现代检测技术作业概要.docx

现代检测技术作业概要

 

现代检测技术

 

学院:

专业:

姓名:

学号:

指导教师:

 

2014年12月30日

一现代检测技术的技术特点和系统的构成

1、现代检测技术特点

(1)测量过程软件控制

智能检测系统可以是新建自稳零放大,自动极性判断,自动量程切换,自动报警,过载保护,非线性补偿,多功能测试和自动巡回检测。

由于有了计算机,上述过程可采用软件控制。

测量过程的软件控制可以简化系统的硬件结构,缩小体积,降低功耗,提高检测系统的可靠性和自动化程度。

(2)智能化数据处理

智能化数据处理是智能检测系统最突出的特点。

计算机可以方便、快捷地实现各种算法。

因此,智能检测系统可用软件对测量结果进行及时、在线处理,提高测量精度。

另一方面,智能检测系统可以对测量结果再加工,获得并提高更多更可靠的高质量信息。

智能检测系统中的计算机可以方便地用软件实现线性化处理、算术平均值处理、数据融合计算、快速的傅里叶变换(FFT)、相关分析等各种信息处理功能。

(3)高度的灵活性

智能检测系统已以软件工作为核心,生产、修改、复制都比较容易,功能和性能指标更加方便。

而传统的硬件检测系统,生产工艺复杂,参数分散性较大,每次更改都涉及到元器件和仪器结构的改变。

(4)实现多参数检测与信息融合

智能检测系统设备多个测量通道,可以有计算对多路测量通进行检测。

在进行多参数检测的基础上,依据各路信息的相关特性,可以实现智能检测系统的多传感器信息融合,从而提高检测系统的准确性、可靠性和容错性。

(5)测量速度快

高速测量时智能检测系统追求的目标之一。

所谓高速检测,是指从检测开始,经过信号放大、整流滤波、非线性补偿、A/D转换、数据处理和结果输出的全过程所需要的时间。

目前,高速A/D转换的采样速度在2000MHz以上,32位PC机的时钟频率也在500MHz以上。

随着电子技术的迅猛发展,高速显示、高速打印、高速绘图设备也日臻完善。

这些都为智能检测系统的快速检测提供了条件。

(6)智能化功能强

以计算机为信息处理核心的智能检测系统具有较强的智能功能,可以满足各类用户的需要。

典型的智能功能有:

1)测量选择功能

智能检测系统能够实现量程转换、信号通道和采样方式的自动选择,使系统具有对被测量对象的最优化跟踪检测能力。

2)故障诊断功能

智能检测系统结构复杂,功能较多,系统本身的故障诊断尤为重要,系统可以根据检测通道的特性和计算机本身的自诊断能力,检查个单元故障,显示故障部位,故障原因和应采取的故障排除方法。

3)其他智能功能

智能检测系统还可以具备人机对话、自校准、打印、绘图、通信、专家知识查询和控制输出等智能功能。

2、系统的构成

现代检测技术的一个明显特点就是传感器采用电参量、电能量或数字传感器以及微型集成传感器,信号处理采用集成电路和微处理器。

尽管现代检测仪器和检测系统的种类、型号繁多,用途、性能千差万别,但它们的作用都是用于各种物理或化学成分等参量的检测,其组成单元按信号传递的流程来区分:

通常由各种传感器(变送器)将非电被测物理或化学成分参量转换成电信号,然后经信号调理(信号转换、信号检波、信号滤波、信号放大等)、数据采集、信号处理后显示并输出(通常有4~20mA、经D/A转换和放大后的模拟电压、开关量、脉宽调制PWM、串行数字通信和并行数字输出等),由以上设备以及系统所需的交、直流稳压电源和必要的输入设备(如拨动开关、按钮、数字拨码盘、数字键盘等)便组成了一个完整的检测(仪器)系统,其各部分关系如图0-1所示。

(1)传感器

传感器是检测系统与被测对象直接发生联系的器件或装置。

它的作用是感受指定被测参量的变化并按照一定规律将其转换成一个相应的便于传递的输出信号。

传感器通常由敏感元件和转换部分组成;其中,敏感元件为传感器直接感受被测参量变化的部分,转换部分的作用通常是将敏感元件的输出转换为便于传输和后续环节处理的电信号。

  

图0-1 现代检测系统一般组成框图

例如,半导体应变片式传感器能把被测对象受力后的微小变形感受出来,通过一定的桥路转换成相应的电压信号输出。

这样,通过测量传感器输出电压便可知道被测对象的受力情况。

这里应该说明,并不是所有的传感器均可清楚、明晰地区分敏感和转换两部分;有的传感器已将这两部分合二为一,也有的仅有敏感元件(如热电阻、热电偶)而无转换部分,但人们仍习惯称其为传感器(如人们习惯称热电阻、热电偶为温度传感器)。

传感器种类繁多,其分类方法也较多。

主要有按被测参量分类法(如温度传感器、湿度传感器、位移传感器、加速度传感器、荷重传感器等),按传感器转换机理(工作原理)分类法(如电阻式、电容式、电感式、压电式、超声波式、霍尔式等)和按输出信号分类法(分为模拟式传感器和数字式传感器两大类)等。

采用按被测参量分类法有利于人们按照目标对象的检测要求选用传感器,而采用按传感器转换机理分类法有利于对传感器做研究和试验。

传感器作为检测系统的信号源,其性能的好坏将直接影响检测系统的精度和其他指标,是检测系统中十分重要的环节。

本书主要介绍工程上涉及面较广、应用较多、需求量大的各种物理量、化学成分量常用的先进的检测技术与实现方法以及如何选用合适的传感器,对传感器要求了解其工作原理、应用特点,而对如何提高现有各种传感器本身的技术性能,以及设计开发新的传感器则不作深入研究。

通常检测仪器、检测系统设计师对传感器有如下要求:

a.精确性 

传感器的输出信号必须准确地反应其输入量,即被测量的变化。

因此,传感器的输出与输入关系必须是严格的单值函数关系,最好是线性关系;

b.稳定性 

传感器的输入、输出的单值函数关系最好不随时间和温度而变化,受外界其他因素的干扰影响亦应很小,重复性要好;

c.灵敏度

即要求被测参量较小的变化就可使传感器获得较大的输出信号;

d.其他

如耐腐蚀性好、低能耗、输出阻抗小和售价相对较低等。

各种传感器输出信号的形式也不尽相同,通常有电荷、电压、电流、频率等,在设计检测系统及选择传感器时对此也应给予重视。

(2)信号调理

信号调理在检测系统中的作用是对传感器输出的微弱信号进行检波、转换、滤波、放大等,以方便检测系统后续环节处理或显示。

例如,工程上常见的热电阻型数字温度检测(控制)仪表,其传感器Ptl00的输出信号为热电阻值的变化。

为便于处理,通常需设计一个四臂电桥,把随被测温度变化的热电阻阻值转换成电压信号;由于信号中往往夹杂着50Hz工频等噪声电压,故其信号调理电路通常包括滤波、放大、线性化等环节。

需要远传的话,通常采取D/A或V/I电路将获得的电压信号转换成标准的4~20mA电流信号后再进行远距离传送。

检测系统种类繁多,复杂程度差异很大,信号的形式也多种多样,各系统的精度、性能指标要求各不相同,它们所配置的信号调理电路的多寡也不尽一致。

对信号调理电路的一般要求是:

1)能准确转换、稳定放大、可靠地传输信号;

2)信噪比高,抗干扰性能要好。

(3)数据采集

数据采集(系统)在检测系统中的作用是对信号调理后的连续模拟信号进行离散化并转换成与模拟信号电压幅度相对应的一系列数值信息,同时以一定的方式把这些转换数据及时传递给微处理器或依次自动存储。

数据采集系统通常以各类模/数(A/D)转换器为核心,辅以模拟多路开关、采样/保持器、输入缓冲器、输出锁存器等。

数据采集系统的主要性能指标是:

1)输入模拟电压信号范围,单位 V;

2)转换速度(率),单位 次/s;

3)分辨率,通常以模拟信号输入为满度时的转换值的倒数来表征;

4)转换误差,通常指实际转换数值与理想A/D转换器理论转换值之差。

(4)信号处理

信号处理模块是现代检测仪表、检测系统进行数据处理和各种控制的中枢环节,其作用和人的大脑相类似。

现代检测仪表、检测系统中的信号处理模块通常以各种型号的单片机、微处理器为核心来构建,对高频信号和复杂信号的处理有时需增加数据传输和运算速度快、处理精度高的专用高速数据处理器(DSP)或直接采用工业控制计算机。

当然,由于检测仪表、检测系统种类和型号繁多,被测参量不同,检测对象和应用场合各异,用户对各检测仪表的测量范围、测量精度、功能的要求差别也很大。

对检测仪表、检测系统的信号处理环节来说,只要能满足用户对信号处理的要求,则是愈简单愈可靠,成本愈低愈好。

对一些容易实现且传感器输出信号大,用户对检测精度要求不高,只要求被测量不要超过某一上限值,一旦越限,送出声(喇叭或蜂鸣器)、光(指示灯)信号即可的检测仪表的信号处理模块,往往只需设计一个可靠的比较电路,该电路的一端为被测信号,另一端为表示上限值的固定电平;当被测信号小于设定的固定电平值,比较器输出为低电平,声、光报警器不动作,一旦被测信号电平大于固定电平值,比较器翻转,经功率放大驱动扬声器、指示灯动作。

这种简单系统的信号处理就很简单,只要一片集成比较器芯片和几个分立元件即可。

但对于热处理和炉温检测、控制系统来说,其信号处理电路将大大复杂化。

因为对热处理炉炉温测控系统,用户不仅要求系统高精度地实时测量炉温,而且需要系统根据热处理工件的热处理工艺制定的时间-温度曲线进行实时控制(调节)。

如果采用一般通用的中小规模集成电路来构建这一类较复杂的检测系统的信号处理模块,则不仅构建技术难度很大,而且所设计的信号处理模块必然结构复杂,调试困难,性能和可靠性差。

  由于微处理器、单片机和大规模集成电路技术的迅速发展和这类芯片价格不断降低,对稍复杂一点的检测系统(仪器)其信号处理环节都应考虑选用合适型号的单片机、微处理器、DSP或新近开始推广的嵌入式模块为核心来设计和构建(或者由工控机兼任),从而使所设计的检测系统获得更高的性能价格比。

(5)信号显示

通常人们都希望及时知道被测参量的瞬时值、累积值或其随时间的变化情况,因此,各类检测仪表和检测系统在信号处理器计算出被测参量的当前值后通常均需送至各自的显示器作实时显示。

显示器是检测系统与人联系的主要环节之一,显示器一般可分为指示式、数字式和屏幕式三种。

1)指示式显示又称模拟式显示。

被测参量数值大小由光指示器或指针在标尺上的相对位置来表示。

用有形的指针位移模拟无形的被测量是较方便、直观的。

指示式仪表有动圈式和动磁式等多种形式,但均有结构简单、价格低廉、显示直观的特点,在检测精度要求不高的单参量测量显示场合应用较多。

指针式仪表存在指针驱动误差和标尺刻度误差,这种仪表的读数精度和仪器的灵敏度等受标尺最小分度的限制,如果操作者读仪表示值时,站位不当就会引入主观读数误差。

2)数字式显示以数字形式直接显示出被测参量数值的大小。

在正常情况下,数字式显示彻底消除了显示驱动误差,能有效地克服读数的主观误差,(相对指示式仪表)可提高显示和读数的精度,还能方便地与计算机连接并进行数据传输。

因此,各类检测仪表和检测系统正越来越多地采用数字式显示方式。

3)屏幕显示实际上是一种类似电视显示方法,具有形象性和易于读数的优点,又能同时在同一屏幕上显示一个被测量或多个被测量的(大量数据式)变化曲线,有利于对它们进行比较、分析。

屏幕显示器一般体积较大,价格与普通指示式显示和数字式显示相比要高得多,其显示通常需由计算机控制,对环境温度、湿度等指标要求较高,在仪表控制室、监控中心等环境条件较好的场合使用较多。

(6)输出

在许多情况下,检测仪表和检测系统在信号处理器计算出被测参量的瞬时值后除送显示器进行实时显示外,通常还需把测量值及时传送给控制计算机、可编程控制器(PLC)或其他执行器、打印机、记录仪等,从而构成闭环控制系统或实现打印(记录)输出。

检测仪表和检测系统的信号输出通常有4~20mA的电流信号,经D/A转换和放大后的模拟电压、开关量、脉宽调制PWM、串行数字通信和并行数字输出等多种形式,需根据测控系统的具体要求确定。

(7)设备

输入设备是操作人员和检测仪表或检测系统联系的另一主要环节,用于输入设置参数,下达有关命令等。

最常用的输入设备是各种键盘、拨码盘、条码阅读器等。

近年来,随着工业自动化、办公自动化和信息化程度的不断提高,通过网络或各种通信总线利用其他计算机或数字化智能终端,实现远程信息和数据输入的方式愈来愈普遍。

最简单的输入设备是各种开关、按钮,模拟量的输入、设置,往往借助电位器进行。

(8)稳压电源

一个检测仪表或检测系统往往既有模拟电路部分,又有数字电路部分,通常需要多组幅值大小要求各异但稳定的电源。

这类电源在检测系统使用现场一般无法直接提供,通常只能提供交流220V工频电源或+24V直流电源。

检测系统的设计者需要根据使用现场的供电电源情况及检测系统内部电路的实际需要,统一设计各组稳压电源,给系统各部分电路和器件分别提供它们所需的稳定电源。

最后,值得一提的是,以上七个部分不是所有的检测系统(仪表)都具备的,而且对有些简单的检测系统,其各环节之间的界线也不是十分清楚,需根据具体情况进行分析。

另外,在进行检测系统设计时,对于把以上各环节具体相连的传输通道,也应给予足够的重视。

传输通道的作用是联系仪表的各个环节,给各环节的输入、输出信号提供通路。

它可以是导线、管路(如光导纤维)以及信号所通过的空间等。

信号传输通道比较简单,易被人们忽视,如果不按规定的要求布置及选择,则易造成信号的损失、失真或引入干扰等,影响检测系统的精度。

二简述现代检测技术中数据处理内容和处理的方法

1、数据处理内容

主要是测量误差的分析。

而测量误差有可以分为随机误差、系统误差、粗大误差。

在同一测量条件下,多次重复测量同一量值时,测量误差的大小和正负符号以不可预知的方式变化,这种误差叫做随机误差,又称偶然误差。

随机误差是由很多复杂因素的微小变化的总和所引起的,因此分析比较困难。

(1)系统误差

当在一定的相同条件下,对同一物理量进行多次测量时,误差的大小和正负总保持不变或者误差按一定的规律变化,这种误差叫做系统误差。

引起系统误差的因素主要有:

材料、零部件及工艺缺陷;环境温度、湿度、压力的变化以及其它外界干扰等。

可以利用修正值来减小或消除系统误差

(2)粗大误差

在相同的条件下,多次重复测量同一量时,明显地歪曲了测量结果的误差,称为粗大误差,简称粗差。

粗差是由于疏忽大意,操作不当,或测量条件的超常变化而引起的。

含有粗大误差的测量值称为坏值,所有的坏值都应去除,但不是主观或随便去除,必须科学地舍弃。

正确的实验结果不应该包含有粗大误差。

2、数据处理方法

(1)有效数字和数据舍入规则

1)有效数字

测量结果和数据处理中,确保几位有效数字是很重要的问题,测量结果既然包含误差,说明测量值实际就是一个近似值,在记录测量结果或者是数据运算时取多少有效数字,应该以测量能达到的准确度为依据,如果认为测量结果中小数点后的位数越多,数据就越准确这是片面的。

2)数据舍入规则

对于位数很多的的近似数,当有效位数确定以后,其后面多余的数组应舍去,而保留的有效数字最末以为数字应按下面的舍入规则进行凑整。

若舍去部分的数值小于保留部分末位的半个单元,则末位不变。

若舍去部分的数值大于保留部分末位的半个单元,则末位加1。

若舍去部分的数值等于保留部分末位的半个单元,则末位凑成偶数,即末位为偶数时不变,末位为奇数时加1。

(2)数据运算规则

在近似运算中,为保证最后结果又尽可能公安的准确度,所有参与运算的数据,在有效数字后可多保留一位数组作为参考数字,或称为安全数字。

1)在加减运算时,各运算数据以小数位数最少的数据位数为准,其余各数据可多取一位小数,单最后结果应与小数位数最少的数据小数位相同。

2)在乘除运算时,个运算数据应以有效位数最少的数据为准,其余各数据要比有效位数最少的数据位数多取一位数字,而最后结果应与有效位数最少的数据位数相同。

3)在平方或开平方运算时,平方相当于乘法运算,开方是平方的逆运算,故可以按照乘除法运算处理。

4)在对数运算时,n位有效数字的数据应该是用n位对数表,或用n+1位对数表,以免损失精度。

5)三角函数运算中,所取函数值得位数应随角度误差的减小而增多。

(3)最小二乘法

最小二乘算法的基本原理是将输入数据与预先设计好的含有非周期分量和某些谐波分量的函数按最小二乘法原理进行拟合,从中求出输入信号中所包含的基频分量和各种谐波分量的幅值和相角。

为便于下面的分析和计算,假设系统故障的暂态电流包含有衰减性直流分量和小于6次谐波的各种整数次谐波分量,则可给定电流表达式:

在我们研究两个变量(x,y)之间的相互关系时,通常可以得到一系列成对的数据(x1,y1、x2,y2...xm,ym);将这些数据描绘在x-y直角坐标系中(如图1),若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。

 Y计=a0+a1X(式1-1)其中:

a0、a1是任意实数 

为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi-Y计)2〕最小为“优化判据”。

  令:

φ=∑(Yi-Y计)2(式1-2) 

  把(式1-1)代入(式1-2)中得:

 

  φ=∑(Yi-a0-a1Xi)2(式1-3) 

当∑(Yi-Y计)平方最小时,可用函数φ对a0、a1求偏导数,令这两个偏导数等于零。

  

亦即:

 

  ma0+(∑Xi)a1=∑Yi(式1-6)

  (∑Xi)a0+(∑Xi2)a1=∑(Xi,Yi)(式1-7) 

得到的两个关于a0、a1为未知数的两个方程组,解这两个方程组得出:

 

  a0=(∑Yi)/m-a1(∑Xi)/m(式1-8) 

  a1=[n∑XiYi-(∑Xi∑Yi)]/[n∑Xi2-(∑Xi)2)](式1-9) 

这时把a0、a1代入(式1-1)中,此时的(式1-1)就是我们回归的元线性方程即:

数学模型。

 

反映了除y与x存在直线关系以外的一切因素(包括x对y的非线性影响及其他一切未加控制的随机因素)所引起的y的变异程度,称为离回归平方和或剩余平方和,所以要求它最小,即其它影响因素最小。

反映了y的总变异程度,称为y的总变异平方和。

最小二乘法是处理各种观测数据进行测量平差的一种基本方法。

如果以不同精度多次观测一个或多个未知量,为了求定各未知量的最可靠值,各观测量必须加改正数,使其各改正数的平方乘以观测值的权数的总和为最小。

因此称最小二乘法。

一般线性情况

若含有更多不相关模型变量t1,...,tq,可如组成线性函数的形式

即线性方程组

通常人们将tij记作数据矩阵 A,参数xj记做参数矢量x,观测值yi记作b,则线性方程组又可写成:

 

即 Ax = b

上述方程运用最小二乘法导出为线性平差计算的形式为:

三简述信息处理的内容和算法

对信息处理实质就是对信号处理

为了深入了解信号的物理实质,将其进行分类研究是非常必要的。

以不同的角度来看待信号,我们可以将信号分为

  1.确定性信号与非确定性信号

  2.能量信号与功率信号

  3.时限信号与频限信号

  4.连续时间信号与离散时间信号

  5.物理可实现信号

1.1确定性信号与非确定性信号

a)确定性信号

  可以用明确的数学关系式描述的信号称为确定性信号。

它可以进一步分为周期信号、非周期信号与准周期信号等,如下图所示。

周期信号是经过一定时间可以重复出现的信号,满足条件:

    x(t) = x(t+nT)

式中,T——周期,T=2π/ω0;ω0——基频;n=0,±1,…。

非周期信号是不会重复出现的信号。

例如,锤子的敲击力;承载缆绳断裂时应力变化;热电偶插入加热炉中温度的变化过程等,这些信号都属于瞬变非周期信号,并且可用数学关系式描述。

例如,下图是单自由度振动模型在脉冲力作用下的响应。

准周期信号是周期与非周期的边缘情况,是由有限个周期信号合成的,但各周期信号的频率相互间不是公倍关系,其合成信号不满足周期条件,例如是两个正弦信号的合成,其频率比不是有理数,不成谐波关系。

这种信号往往出现于通信、振动系统,应用于机械转子振动分析,齿轮噪声分析,语音分析等场合

b)非确定性信号

  非确定性信号不能用数学关系式描述,其幅值、相位变化是不可预知的,所描述的物理现象是一种随机过程。

例如,汽车奔驰时所产生的振动;飞机在大气流中的浮动;树叶随风飘荡;环境噪声等。

1.1信号的时域分析

信号时域分析又称之为波形分析或时域统计分析,它是通过信号的时域波形计算信号的均值、均方值、方差等统计参数。

信号的时域分析很简单,用示波器、万用表等普通仪器就可以进行分析。

1.信号类型确定

  信号时域分析(波形分析)的一个重要功能是根据信号的分类和各类信号的特点确定信号的类型。

然后再根据信号类型选用合适的信号分析方法。

2.周期T

  对周期信号来说,可以用时域分析来确定信号的周期,也就是计算相邻的两个信号波峰的时间差。

3.均值

   均值E[x(t)]表示集合平均值或数学期望值.基于随机过程的特性,可用时间间隔T内的幅值平均值表示,即

4.均方值

信号x(t)的均方值E[x2(t)],或称为平均功率,其表达式为:

值表达了信号的强度,其正平方根值,又称为有效值,也是信号的平均能量的一种表达。

在工程信号测量中一般仪器的表头示值显示的就是信号的均方值。

5.方差

   信号x(t)的方差定义为:

称为均方差或标准差。

可以证明,

描述了信号的波动量;

描述了信号的静态量。

 方差反映了信号绕均值的波动程度。

1.3信号的相关分析

1.3.1相关的概念

相关是指客观事物变化量之间的相依关系,在统计学中是用相关系数来描述两个变量x,y之间的相关性的,即:

式中pxy是两个随机变量波动量之积的数学期望,称之为协方差或相关性,表征了x、y之间的关联程度;、

分别为随机变量x、y的均方差,是随机变量波动量平方的数学期望。

自然界中的事物变化规律的表现,总有互相关联的现象,不一定是线形相关,也不一定是完全无关,如:

人的身高与体重,吸烟与寿命的关系。

2.4信号的幅值分析

信号的幅值分析包括信号的幅值概率密度函数和幅值概率分布函数,它反映了幅值信号落在不同强度区域的概率情况。

a)概率密度函数

  随机信号的概率密度函数定义为:

对于各态历经过程:

b)概率分布函数

  概率分布函数是信号幅值小于或等于某值R的概率,其定义为:

概率分布函数又称之为累积概率,表示了落在某一区间的概率,亦可写为:

典型信号的概率密度函数和概率分布函数如下图所示:

1.5信号的表述

1.5.1周期信号的表述

一般周期信号可以利用傅里叶级数展开成多个乃至无穷多个不同频率的谐波信号的线性叠加。

傅里叶级数展开式包含三角函数展开式、复指数展开式。

1三角函数展开式

.对于满足狄里赫勒条件:

函数在(-T/2,T/2)区间连续或只有有限个第一类间断点,且只有有限个极值点的周期信号,均可展开成:

式中常值分量、余弦分量幅值、正弦分量幅值分别为 

式中:

a0,an,bn为傅里叶系数;T0为信号的周期,也是信号基波成份的周期;

ω0=2π/T0为信号的基频,nω0为n次谐频。

由三角函数变换,可将式中的正、余弦同频项合并

式中:

常值分量A0=a0

各谐波分量的幅值

各谐

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高等教育 > 教育学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2