八上几何辅助线专题讲解和练习Word文档下载推荐.docx

上传人:b****2 文档编号:5607414 上传时间:2023-05-05 格式:DOCX 页数:41 大小:377.45KB
下载 相关 举报
八上几何辅助线专题讲解和练习Word文档下载推荐.docx_第1页
第1页 / 共41页
八上几何辅助线专题讲解和练习Word文档下载推荐.docx_第2页
第2页 / 共41页
八上几何辅助线专题讲解和练习Word文档下载推荐.docx_第3页
第3页 / 共41页
八上几何辅助线专题讲解和练习Word文档下载推荐.docx_第4页
第4页 / 共41页
八上几何辅助线专题讲解和练习Word文档下载推荐.docx_第5页
第5页 / 共41页
八上几何辅助线专题讲解和练习Word文档下载推荐.docx_第6页
第6页 / 共41页
八上几何辅助线专题讲解和练习Word文档下载推荐.docx_第7页
第7页 / 共41页
八上几何辅助线专题讲解和练习Word文档下载推荐.docx_第8页
第8页 / 共41页
八上几何辅助线专题讲解和练习Word文档下载推荐.docx_第9页
第9页 / 共41页
八上几何辅助线专题讲解和练习Word文档下载推荐.docx_第10页
第10页 / 共41页
八上几何辅助线专题讲解和练习Word文档下载推荐.docx_第11页
第11页 / 共41页
八上几何辅助线专题讲解和练习Word文档下载推荐.docx_第12页
第12页 / 共41页
八上几何辅助线专题讲解和练习Word文档下载推荐.docx_第13页
第13页 / 共41页
八上几何辅助线专题讲解和练习Word文档下载推荐.docx_第14页
第14页 / 共41页
八上几何辅助线专题讲解和练习Word文档下载推荐.docx_第15页
第15页 / 共41页
八上几何辅助线专题讲解和练习Word文档下载推荐.docx_第16页
第16页 / 共41页
八上几何辅助线专题讲解和练习Word文档下载推荐.docx_第17页
第17页 / 共41页
八上几何辅助线专题讲解和练习Word文档下载推荐.docx_第18页
第18页 / 共41页
八上几何辅助线专题讲解和练习Word文档下载推荐.docx_第19页
第19页 / 共41页
八上几何辅助线专题讲解和练习Word文档下载推荐.docx_第20页
第20页 / 共41页
亲,该文档总共41页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

八上几何辅助线专题讲解和练习Word文档下载推荐.docx

《八上几何辅助线专题讲解和练习Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《八上几何辅助线专题讲解和练习Word文档下载推荐.docx(41页珍藏版)》请在冰点文库上搜索。

八上几何辅助线专题讲解和练习Word文档下载推荐.docx

平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成罕见的三角形、正方形等问题处置,其经常使用方法有下列几种,举例简解如下:

(1)连对角线或平移对角线:

(2)过极点作对边的垂线构造直角三角形

(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线

(4)连接极点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形.

(5)过极点作对角线的垂线,构成线段平行或三角形全等.

三、作辅助线的方法

一:

中点、中位线,延线,平行线.

如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段即是中线或中位线;

另一种辅助线是过中点作已知边或线段的平行线,以到达应用某个定理或造玉成等的目的.

二:

垂线、角平分线,翻转全等连.

如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,获得全等形,,这时辅助线的做法就会应运而生.其对称轴往往是垂线或角的平分线.

三:

边边若相等,旋转做实验.

如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以获得全等形,这时辅助线的做法仍会应运而生.其对称中心,因题而异,有时没有中心.故可分“有心”和“无心”旋转两种.

四:

面积找底高,多边变三边.

如遇求面积,(在条件和结论中呈现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键.

如遇多边形,想法割补成三角形;

反之,亦成立.

另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,年夜大都为“面积找底高,多边变三边”.

四、三角形中作辅助线的经常使用方法举例

一、在证明三角形中多条线段的不等量关系时,若直接证不出来,可连接两点或延长某边构成三角形,使结论中呈现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:

例1:

已知如图1-1:

D、E为△ABC内两点,求证:

AB+AC>BD+DE+CE.

证明:

(法一)将DE两边延长分别交AB、AC于M、N,

在△AMN中,AM+AN>MD+DE+NE;

(1)

在△BDM中,MB+MD>BD;

(2)

在△CEN中,CN+NE>CE;

(3)

(1)+

(2)+(3)得:

AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE

∴AB+AC>BD+DE+EC

(法二:

)如图1-2,延长BD交AC于F,延长CE交BF于G,

在△ABF和△GFC和△GDE中有:

AB+AF>BD+DG+GF 

(三角形两边之和年夜于第三边)

(1)

GF+FC>GE+CE(同上)………………………………

(2)

DG+GE>DE(同上)……………………………………(3)

(1)+

(2)+(3)得:

AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE

∴AB+AC>BD+DE+EC.

二、在证明三角形中某些角的不等量关系时,如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的年夜角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:

例如:

如图2-1:

已知D为△ABC内的任一点,求证:

∠BDC>∠BAC.

分析:

因为∠BDC与∠BAC不在同一个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠BDC处于在外角的位置,∠BAC处于在内角的位置;

证法一:

延长BD交AC于点E,这时∠BDC是△EDC的外角,

∴∠BDC>∠DEC,同理∠DEC>∠BAC,∴∠BDC>∠BAC

证法二:

连接AD,并延长交BC于F

∵∠BDF是△ABD的外角

∴∠BDF>∠BAD,同理,∠CDF>∠CAD

∴∠BDF+∠CDF>∠BAD+∠CAD

即:

注意:

利用三角形外角定理证明不等关系时,通常将年夜角放在某三角形的外角位置上,小角放在这个三角形的内角位置上,再利用不等式性质证明.

三、有角平分线时,通常在角的两边截取相等的线段,构造全等三角形,如:

如图3-1:

已知AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:

BE+CF>EF.

要证BE+CF>EF,可利用三角形三边关系定理证明,须把BE,CF,EF移到同一个三角形中,而由已知∠1=∠2,∠3=∠4,可在角的两边截取相等的线段,利用三角形全等对应边相等,把EN,FN,EF移到同一个三角形中.

在DA上截取DN=DB,连接NE,NF,则DN=DC,

在△DBE和△DNE中:

∴△DBE≌△DNE(SAS)

∴BE=NE(全等三角形对应边相等)

同理可得:

CF=NF

在△EFN中EN+FN>EF(三角形两边之和年夜于第三边)

∴BE+CF>EF.

当证题有角平分线时,常可考虑在角的两边截取相等的线段,构造全等三角形,然后用全等三角形的性质获得对应元素相等.

四、有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形.

如图4-1:

AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:

BE+CF>EF

延长ED至M,使DM=DE,连接

CM,MF.在△BDE和△CDM中,

∴△BDE≌△CDM(SAS)

又∵∠1=∠2,∠3=∠4(已知)

∠1+∠2+∠3+∠4=180°

(平角的界说)

∴∠3+∠2=90°

即:

∠EDF=90°

∴∠FDM=∠EDF=90°

在△EDF和△MDF中

∴△EDF≌△MDF(SAS)

∴EF=MF(全等三角形对应边相等)

∵在△CMF中,CF+CM>MF(三角形两边之和年夜于第三边)

∴BE+CF>EF

注:

上题也可加倍FD,证法同上.

当涉及到有以线段中点为端点的线段时,可通过延长加倍此线段,构造全等三角形,使题中分散的条件集中.

五、有三角形中线时,常延长加倍中线,构造全等三角形.

如图5-1:

AD为△ABC的中线,求证:

AB+AC>2AD.

要证AB+AC>2AD,由图想到:

AB+BD>AD,AC+CD>AD,所以有AB+AC+BD+CD>AD+AD=2AD,左边比要证结论多BD+CD,故不能直接证出此题,而由2AD想到要构造2AD,即加倍中线,把所要证的线段转移到同一个三角形中去.

延长AD至E,使DE=AD,连接BE,则AE=2AD

∵AD为△ABC的中线(已知)

∴BD=CD(中线界说)

在△ACD和△EBD中

∴△ACD≌△EBD(SAS)

∴BE=CA(全等三角形对应边相等)

∵在△ABE中有:

AB+BE>AE(三角形两边之和年夜于第三边)

∴AB+AC>2AD.

(常延长中线加倍,构造全等三角形)

练习:

已知△ABC,AD是BC边上的中线,分别以AB边、AC边为直角边各向形外作等腰直角三角形,如图5-2,求证EF=2AD.

六、截长补短法作辅助线.

已知如图6-1:

在△ABC中,AB>AC,∠1=∠2,P为AD上任一点.求证:

AB-AC>PB-PC.

要证:

AB-AC>PB-PC,想到利用三角形三边关系定理证之,因为欲证的是线段之差,故用两边之差小于第三边,从而想到构造第三边AB-AC,故可在AB上截取AN即是AC,得AB-AC=BN,再连接PN,则PC=PN,又在△PNB中,PB-PN<BN,即:

(截长法)

在AB上截取AN=AC连接PN,在△APN和△APC中

∴△APN≌△APC(SAS)

∴PC=PN(全等三角形对应边相等)

∵在△BPN中,有PB-PN<BN(三角形两边之差小于第三边)

∴BP-PC<AB-AC

(补短法)延长AC至M,使AM=AB,连接PM,

在△ABP和△AMP中

∴△ABP≌△AMP(SAS)

∴PB=PM(全等三角形对应边相等)

又∵在△PCM中有:

CM>PM-PC(三角形两边之差小于第三边)

∴AB-AC>PB-PC.

七、延长已知边构造三角形:

如图7-1:

已知AC=BD,AD⊥AC于A,BC⊥BD于B,求证:

AD=BC

欲证AD=BC,先证分别含有AD,BC的三角形全等,有几种方案:

△ADC与△BCD,△AOD与△BOC,△ABD与△BAC,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角.

分别延长DA,CB,它们的延长交于E点,

∵AD⊥ACBC⊥BD(已知)

∴∠CAE=∠DBE=90°

(垂直的界说)

在△DBE与△CAE中

∴△DBE≌△CAE(AAS)

∴ED=ECEB=EA(全等三角形对应边相等)

∴ED-EA=EC-EB

即:

AD=BC.

(当条件缺乏时,可通过添加辅助线得出新的条件,为证题缔造条件.)

八、连接四边形的对角线,把四边形的问题转化成为三角形来解决.

如图8-1:

AB∥CD,AD∥BC求证:

AB=CD.

图为四边形,我们只学了三角形的有关知识,必需把它转化为三角形来解决.

连接AC(或BD)

∵AB∥CDAD∥BC(已知)

∴∠1=∠2,∠3=∠4(两直线平行,内错角相等)

在△ABC与△CDA中

∴△ABC≌△CDA(ASA)

∴AB=CD(全等三角形对应边相等)

九、有和角平分线垂直的线段时,通常把这条线段延长.

如图9-1:

在Rt△ABC中,AB=AC,∠BAC=90°

∠1=∠2,CE⊥BD的延长于E.求证:

BD=2CE

要证BD=2CE,想到要构造线段2CE,同时CE与∠ABC的平分线垂直,想到要将其延长.

分别延长BA,CE交于点F.

∵BE⊥CF(已知)

∴∠BEF=∠BEC=90°

在△BEF与△BEC中,

∴△BEF≌△BEC(ASA)∴CE=FE=

CF(全等三角形对应边相等)

∵∠BAC=90°

BE⊥CF(已知)

∴∠BAC=∠CAF=90°

∠1+∠BDA=90°

∠1+∠BFC=90°

∴∠BDA=∠BFC

在△ABD与△ACF中

∴△ABD≌△ACF(AAS)∴BD=CF(全等三角形对应边相等)∴BD=2CE

十、连接已知点,构造全等三角形.

已知:

如图10-1;

AC、BD相交于O点,且AB=DC,AC=BD,求证:

∠A=∠D.

要证∠A=∠D,可证它们所在的三角形△ABO和△DCO全等,而只有AB=DC和对顶角两个条件,差一个条件,,难以证其全等,只有另寻其它的三角形全等,由AB=DC,AC=BD,若连接BC,则△ABC和△DCB全等,所以,证得∠A=∠D.

连接BC,在△ABC和△DCB中

∴△ABC≌△DCB(SSS)

∴∠A=∠D(全等三角形对应边相等)

十一、取线段中点构造全等三有形.

如图11-1:

AB=DC,∠A=∠D求证:

∠ABC=∠DCB.

由AB=DC,∠A=∠D,想到如取AD的中点N,连接NB,NC,再由SAS公理有△ABN≌△DCN,故BN=CN,∠ABN=∠DCN.下面只需证∠NBC=∠NCB,再取BC的中点M,连接MN,则由SSS公理有△NBM≌△NCM,所以∠NBC=∠NCB.问题得证.

取AD,BC的中点N、M,连接NB,NM,NC.则AN=DN,BM=CM,在△ABN和△DCN中∵

∴△ABN≌△DCN(SAS)

∴∠ABN=∠DCNNB=NC(全等三角形对应边、角相等)

在△NBM与△NCM中

∴△NMB≌△NCM,(SSS)∴∠NBC=∠NCB(全等三角形对应角相等)∴∠NBC+∠ABN=∠NCB+∠DCN即∠ABC=∠DCB.

五、巧求三角形中线段的比值

例1.如图1,在△ABC中,BD:

DC=1:

3,AE:

ED=2:

3,求AF:

FC.

解:

过点D作DG//AC,交BF于点G

所以DG:

FC=BD:

BC

因为BD:

3所以BD:

BC=1:

4

即DG:

FC=1:

4,FC=4DG

因为DG:

AF=DE:

AE又因为AE:

3

AF=3:

2

所以AF:

FC=

4DG=1:

6

例2.如图2,BC=CD,AF=FC,求EF:

FD

过点C作CG//DE交AB于点G,则有EF:

GC=AF:

AC

因为AF=FC所以AF:

AC=1:

2

即EF:

GC=1:

2,

因为CG:

DE=BC:

BD又因为BC=CD

所以BC:

BD=1:

2CG:

DE=1:

2即DE=2GC

因为FD=ED-EF=

所以EF:

FD=

小结:

以上两例中,辅助线都作在了“已知”条件中呈现的两条已知线段的交点处,且所作的辅助线与结论中呈现的线段平行.请再看两例,让我们感受其中的奇妙!

例3.如图3,BD:

EB=2:

FD.

过点B作BG//AD,交CE延长线于点G.

所以DF:

BG=CD:

CB

3所以CD:

CB=3:

即DF:

BG=3:

4,

因为AF:

BG=AE:

EB又因为AE:

3

所以AF:

BG=2:

3即

DF=

例4.如图4,BD:

3,AF=FD,求EF:

过点D作DG//CE,交AB于点G

所以EF:

DG=AF:

AD

因为AF=FD所以AF:

AD=1:

2图4

DG=1:

CE=BD:

BC,又因为BD:

CD=1:

3,所以BD:

4

CE=1:

4,CE=4DG

因为FC=CE-EF=

=1:

7

1.如图5,BD=DC,AE:

ED=1:

5,求AF:

FB.

2.如图6,AD:

DB=1:

EC=3:

1,求BF:

谜底:

1、1:

10;

2.9:

1

六、辅助线总结

一、由角平分线想到的辅助线

口诀:

图中有角平分线,可向两边作垂线.也可将图半数看,对称以后关系现.角平分线平行线,等腰三角形来添.角平分线加垂线,三线合一试试看.

角平分线具有两条性质:

a、对称性;

b、角平分线上的点到角两边的距离相等.对有角平分线的辅助线的作法,一般有两种.

①从角平分线上一点向两边作垂线;

②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边).

通常情况下,呈现了直角或是垂直等条件时,一般考虑作垂线;

其它情况下考虑构造对称图形.至于选取哪种方法,要结合题目图形和已知条件.

与角有关的辅助线

(一)、截取构全等

几何的证明在于猜想与检验考试,但这种检验考试与猜想是在一定的规律基本之上的,希望同学们能掌握相关的几何规律,在解决几何问题中年夜胆地去猜想,按一定的规律去检验考试.下面就几何中罕见的定理所涉及到的辅助线作以介绍.

如图1-1,∠AOC=∠BOC,如取OE=OF,并连接DE、DF,则有△OED≌△OFD,从而为我们证明线段、角相等缔造了条件.

如图1-2,AB//CD,BE平分∠BCD,CE平分∠BCD,点E在AD上,求证:

BC=AB+CD.

此题中就涉及到角平分线,可以利用角平分线来构造全等三角形,即利用解平分线来构造轴对称图形,同时此题也是证明线段的和差倍分问题,在证明线段的和差倍分问题中经常使用到的方法是延长法或截取法来证明,延长短的线段或在长的线段长截取一部份使之即是短的线段.但无论延长还是截取都要证明线段的相等,延长要证明延长后的线段与某条线段相等,截取要证明截取后剩下的线段与某条线段相等,进而到达所证明的目的.

简证:

在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而到达证明的目的.这里面用到了角平分线来构造全等三角形.另外一个全等自已证明.此题的证明也可以延长BE与CD的延长线交于一点来证明.自已试一试.

如图1-3,AB=2AC,∠BAD=∠CAD,DA=DB,求证DC⊥AC

此题还是利用角平分线来构造全等三角形.构造的方法还是截取线段相等.其它问题自已证明.

如图1-4,在△ABC中,∠C=2∠B,AD平分∠BAC,求证:

AB-AC=CD

此题的条件中还有角的平分线,在证明中还要用到构造全等三角形,此题还是证明线段的和差倍分问题.用到的是截取法来证明的,在长的线段上截取短的线段,来证明.试试看可否把短的延长来证明呢?

练习

已知在△ABC中,AD平分∠BAC,∠B=2∠C,求证:

AB+BD=AC

在△ABC中,∠CAB=2∠B,AE平分∠CAB交BC于E,AB=2AC,求证:

AE=2CE

在△ABC中,AB>

AC,AD为∠BAC的平分线,M为AD上任一点.求证:

BM-CM>

AB-AC

D是△ABC的∠BAC的外角的平分线AD上的任一点,连接DB、DC.求证:

BD+CD>

AB+AC.

(二)角分线上点向角两边作垂线构全等

过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题.

如图2-1,已知AB>

AD,∠BAC=∠FAC,CD=BC.

求证:

∠ADC+∠B=180 

可由C向∠BAD的两边作垂线.近而证∠ADC与∠B之和为平角.

如图2-2,在△ABC中,∠A=90 

AB=AC,∠ABD=∠CBD.

BC=AB+AD

过D作DE⊥BC于E,则AD=DE=CE,则构造出全等三角形,从而得证.此题是证明线段的和差倍分问题,从中利用了相当于截取的方法.

已知如图2-3,△ABC的角平分线BM、CN相交于点P.求证:

∠BAC的平分线也经过点P.

连接AP,证AP平分∠BAC即可,也就是证P到AB、AC的距离相等.

1.如图2-4∠AOP=∠BOP=15 

PC//OA,PD⊥OA,

如果PC=4,则PD=()

A4B3C2D1

2.已知在△ABC中,∠C=90 

AD平分∠CAB,CD=1.5,DB=2.5.求AC.

3.已知:

如图2-5,∠BAC=∠CAD,AB>

AD,CE⊥AB,

AE=

(AB+AD).求证:

∠D+∠B=180 

.

4.已知:

如图2-6,在正方形ABCD中,E为CD的中点,F为BC

上的点,∠FAE=∠DAE.求证:

AF=AD+CF.

如图2-7,在Rt△ABC中,∠ACB=90 

CD⊥AB,垂足为D,AE平分∠CAB交CD于F,过F作FH//AB交BC于H.求证CF=BH.

(三)作角平分线的垂线构造等腰三角形

从角的一边上的一点作角平分线的垂线,使之与角的两边相交,则截得一个等腰三角形,垂足为底边上的中点,该角平分线又成为底边上的中线和高,以利用中位线的性质与等腰三角形的三线合一的性质.(如果题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交).

如图3-1,∠BAD=∠DAC,AB>

AC,CD⊥AD于D,H是BC中点.求证:

DH=

(AB-AC)

延长CD交AB于点E,则可得全等三角形.问题可证.

如图3-2,AB=AC,∠BAC=90 

AD为∠ABC的平分线,CE⊥BE.求证:

BD=2CE.

给出了角平分线给出了边上的一点作角平分线的垂线,可延长此垂线与另外一边相交,近而构造出等腰三角形.

例3.已知:

如图3-3在△ABC中,AD、AE分别∠BAC的内、外角平分线,过极点B作BFAD,交AD的延长线于F,连结FC并延长交AE于M.

AM=ME.

由AD、AE是∠BAC内外角平分线,可得EA⊥AF,从而有BF//AE,所以想到利用比例线段证相等.

如图3-4,在△ABC中,AD平分∠BAC,AD=AB,CM⊥AD交AD延长线于M.求证:

AM=

(AB+AC)

题设中给出了角平分线AD,自然想到以AD为轴作对称变换,作△ABD关于AD的对称△AED,然后只需证DM=

EC,另外由求证的结果AM=

(AB+AC),即2AM=AB+AC,也可检验考试作△ACM关于CM的对称△FCM,然后只需证DF=CF即可.

在△ABC中,AB=5,AC=3,D是BC中点,AE是∠BAC的平分线,且CE⊥AE于E,连接DE,求DE.

已知BE、BF分别是△ABC的∠ABC的内角与外角的平分线,AF⊥BF于F,AE⊥BE于E,连接EF分别交AB、AC于M、N,求证MN=

(四)以角分线上一点做角的另一边的平行线

有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形.或通过一边上的点作角平分线的平行线与另外一边的反向

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经管营销 > 金融投资

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2