格构式塔吊基础专项方案Word格式文档下载.docx

上传人:b****1 文档编号:5638908 上传时间:2023-05-05 格式:DOCX 页数:36 大小:156.43KB
下载 相关 举报
格构式塔吊基础专项方案Word格式文档下载.docx_第1页
第1页 / 共36页
格构式塔吊基础专项方案Word格式文档下载.docx_第2页
第2页 / 共36页
格构式塔吊基础专项方案Word格式文档下载.docx_第3页
第3页 / 共36页
格构式塔吊基础专项方案Word格式文档下载.docx_第4页
第4页 / 共36页
格构式塔吊基础专项方案Word格式文档下载.docx_第5页
第5页 / 共36页
格构式塔吊基础专项方案Word格式文档下载.docx_第6页
第6页 / 共36页
格构式塔吊基础专项方案Word格式文档下载.docx_第7页
第7页 / 共36页
格构式塔吊基础专项方案Word格式文档下载.docx_第8页
第8页 / 共36页
格构式塔吊基础专项方案Word格式文档下载.docx_第9页
第9页 / 共36页
格构式塔吊基础专项方案Word格式文档下载.docx_第10页
第10页 / 共36页
格构式塔吊基础专项方案Word格式文档下载.docx_第11页
第11页 / 共36页
格构式塔吊基础专项方案Word格式文档下载.docx_第12页
第12页 / 共36页
格构式塔吊基础专项方案Word格式文档下载.docx_第13页
第13页 / 共36页
格构式塔吊基础专项方案Word格式文档下载.docx_第14页
第14页 / 共36页
格构式塔吊基础专项方案Word格式文档下载.docx_第15页
第15页 / 共36页
格构式塔吊基础专项方案Word格式文档下载.docx_第16页
第16页 / 共36页
格构式塔吊基础专项方案Word格式文档下载.docx_第17页
第17页 / 共36页
格构式塔吊基础专项方案Word格式文档下载.docx_第18页
第18页 / 共36页
格构式塔吊基础专项方案Word格式文档下载.docx_第19页
第19页 / 共36页
格构式塔吊基础专项方案Word格式文档下载.docx_第20页
第20页 / 共36页
亲,该文档总共36页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

格构式塔吊基础专项方案Word格式文档下载.docx

《格构式塔吊基础专项方案Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《格构式塔吊基础专项方案Word格式文档下载.docx(36页珍藏版)》请在冰点文库上搜索。

格构式塔吊基础专项方案Word格式文档下载.docx

灰色粉质粘土

8

35

1.00

表二

灰色砂质粉土夹粉质粘土

12.3

55

1100

1.01.00

序号土层厚度

hi(m)

重度γi(kN/m

3)极限侧阻(kPa)压缩模量

Ei(MPa)

19

30

17.3

2.55

18.1

3.59

18.5

17

5

11.7

50

11

6

5.2

15

7

9.1

85

45

18

70

9

100

19.2

65

3.3格构柱、格构式塔吊基础施工要求

1、格构柱端锚入混凝土承台长度不小于450mm和1/3承台厚度;

混凝土强度等级不小于

C35;

本工程定为格构柱端锚入混凝土承台长度不小于450mm,混凝土强度等级C40。

2、格构柱锚入桩基中的长度不小于2000mm,并需增加箍筋和主筋数量,确保焊接质量桩混凝土等级不小于C30;

本工程格构柱锚入桩基中的长度3000mm,桩采用水下C30混凝土。

3、吊(插)入桩孔时,应控制钢构柱的垂直与水平二个方向的偏位。

特别需防止浇捣混凝土后钢构柱的偏位,施工方案中必须有防偏位措施(采用模具等定位方法)。

4、钢构柱应在工厂制作,成品后运往工地。

现场焊接水平杆与斜撑杆(柱间支撑)等

构件,必须持有焊接上岗证,原则上仍应由生产厂家派员施焊。

5、单肢钢构柱内部需留有足够空间,浇捣混凝土中应采取有效手段保证混凝土的填充率达到95%以上。

6、开挖土方时,塔机钢构柱周围的土方应分层开挖,钢构柱之间的水平与斜撑杆(或

柱间支撑),连接板等构件,必须跟随挖土深度而及时设置并焊接。

7、塔机使用中,要经常观察钢筋混凝土连接块的变形情况;

经常观察地脚螺栓松动情况,随时拧紧;

经常观察塔机的垂直度,发现超差及时纠正。

8、工程桩和塔吊专用桩不均匀沉降差:

23.820-9.295=14.525mm。

考虑到从塔吊开始使用到基坑大底板浇筑完成时间段约4个月,初期不均匀沉降量可估算为14.525×

60%=8.715mm,8.715/2200=3.961‰<

4‰,满足要求。

在地下室大底板完成浇筑前应加强观测,及时采取纠偏措施;

考虑到塔基桩端以下有4m厚的水泥土搅拌桩加固层,在灌注桩施工时,22m塔基桩可采取适当扩大桩端2m范围内的直径,减少沉降差。

为进一步降低不均匀

沉降,宜采取扩大桩顶以下2m范围内直径的措施(扩为850mm,其余不变)。

4.格构式塔吊基础计算书

4.1基本参数

4.1.1塔吊基本参数

塔吊型号:

QZT80E(5514);

标准节长度b:

2.5m;

塔吊自重Gt:

1015.4kN(升至理论附着最高时的最重状态,加平衡配重,在起升40m时自重为50.6t至69.14t,因标准节选材的不同而不同);

最大起重荷载Q:

80kN;

塔吊地脚螺栓的直径d:

按塔吊说明书设置;

塔吊起升高度H:

40m;

塔吊地脚螺栓数目n:

塔身宽度B:

1.6m;

塔吊地脚螺栓性能等级:

工作风压:

≤0.25kPa非工作风压:

≤0.80kPa(初次起升)

特别说明:

抗压以全重加最大弯矩计算,桩抗拔以初升40m时的重量计算,此为最不利状态。

在塔吊升至最高时,通过设置4个附墙件,塔身弯矩传递至基础承台的数值非常小,仅有塔身最大弯矩的2%左右;

设置第一道附墙件时仅有20%左右,此时在最下端的基础主要承受垂直压力,且届时大底板早已浇筑完成,受力状况大为简化,因此塔吊在40m初始高度进一步上升后基础的受弯矩作用力状况无需进一步复核验算。

计算图举例如下:

塔吊示意图

弯矩图

综上所述,对于塔吊基础,定下如下需要验算的工况项目:

○1塔吊40m初升独立时,工作状态、非工作状态下最大弯矩及其分别对格构柱、桩造成的最大、最小压力;

○2塔吊升至最高140m(本工程实际仅110m左右)分别对格构柱、桩的最大竖向压力

4.1.2格构柱基本参数

格构柱计算长度lo:

10.6m;

格构柱缀件类型:

缀板;

格构柱缀件节间长度a1:

0.8m;

格构柱分肢材料类型:

L140x14;

格构柱基础缀件节间长度a2:

2.4m;

格构柱钢板缀件参数:

宽270mm,厚12mm;

格构柱截面宽度b1:

0.47m;

格构柱基础缀件材料类型:

L70x8;

单根格构柱计算自重:

2.7t

4.1.3基础参数

桩中心距S2×

S1:

2.2m×

3m;

桩入土深度l:

22m(2根工程桩62m,仅沉降验算使用);

桩直径d:

0.8m(2根工程桩0.85m为便于计算,仅沉降验算使用);

桩混凝土等级:

水下C30;

桩型与工艺:

泥浆护壁钻(冲)孔灌注桩;

桩钢筋直径:

20mm;

桩钢筋型号:

HRB335;

承台宽度L2×

L1:

3.5m×

4.5m;

承台厚度h:

1.2m;

承台混凝土等级为:

C40;

承台钢筋等级:

承台钢筋直径:

20;

承台保护层厚度:

25mm;

承台箍筋间距:

250mm;

4.1.4塔吊计算状态参数

地面粗糙类别:

D类密集建筑群,房屋较高;

风荷载高度变化系数:

0.73;

主弦杆材料:

圆钢;

主弦杆宽度c:

250mm;

非工作状态:

所处城市上海,最大允许风压ω0:

0.8kN/m2;

额定起重力矩Me:

892kN·

m;

基础所受水平力P:

30kN;

塔吊倾覆力矩M:

552.37kN·

m(非工作状态下,起重力矩不发生);

工作状态:

所处城市上海,最大允许风压ω0:

0.25kN/m2,额定起重力矩Me:

1089.49kN·

4.2非工作状态下荷载计算

4.2.1塔吊受力计算

1、塔吊竖向力计算

承台自重:

Gc=25×

Bc×

1.2=25×

3.50×

4.50×

1.20×

1.2=567.00kN

格构柱系统自重:

Gz=4×

27×

1.2=129.60kN

作用在基础桩上的垂直力:

N=1.2×

(Gt+Gc+Gz)=1.2×

(1015.40+567.00+129.60)=2050.60kN(全高)

N=1.2×

(506.0+567.00+129.60)=1443.12kN(初升40m,上拔力验算

用)

(691.4+567.00+129.60)=1665.60kN(初升40m,压力验算用)

2、塔吊风荷载计算(初升40m)

地处上海,最大允许风压ω0=0.8kN/m2

挡风系数计算:

φ=(3B+2b+(4B2+b2)1/2c/Bb)

挡风系数Φ=0.87体型系数μs=1.14

查表得:

荷载高度变化系数μz=0.73

高度z处的风振系数取:

βz=1.0

所以风荷载设计值为:

ω=0.7×

βz×

μs×

μz×

ω0=0.7×

1.00×

1.14×

0.73×

0.80=0.47kN/m2

3、塔吊弯矩计算

风荷载对塔吊基础产生的弯矩计算:

Mω=ω×

ΦB×

0.5=0.47×

0.87×

1.60×

40.00×

0.5=516.77kN·

m

总的最大弯矩值:

Mmax=1.4×

(Me+Mω+P×

h)=1.4×

(516.77+30.00×

1.20)=552.37kN·

4、塔吊水平力计算

水平力:

V=1.2×

(ω×

Φ+P)=1.2×

(0.80×

0.87+30.00)=89.23kN

5、每根格构柱的受力计算

作用于格构柱顶面的重力作用:

(Gt+Gc)=1.2×

(1015.40+567.00)=1898.88kN。

Mmax=552.37kN·

mV=89.23kN

N=2050.60kN(全高)N=1443.12kN(初升40m,上拔力验算用)N=1665.60kN(初升40m,压力验算用)

作用在桩面弯矩Mmax=552.37+1.4×

89.23×

11.8(格构柱承台高度)=2026.46kN·

图中x轴的方向是随时变化的,计算时应按照倾覆力矩Mmax最不利方向进行验算。

(1)、桩顶竖向力的计算(取下述工况中的大者)

○1全高140m时的工况(加设扶墙件,弯矩及水平力可忽略):

Ni=(F+G)/4=2050.60/4=512.65kN

○2初升40m,竖向压力验算Ni=(F+G)/4±

Mxyi/Σyi2±

Myxi/Σxi2;

式中:

N-单桩个数,n=4;

F-作用于桩基承台顶面的竖向力设计值;

G-桩基承台加上格构柱的自重;

Mx,My-承台底面的弯矩设计值;

xi,yi-单桩相对承台中心轴的XY方向距离;

Ni-单桩桩顶竖向力设计值;

设短边方向为x方向,长边方向为y方向。

确定最不利弯矩方向:

设与x方向夹角为а,则单桩受力N=M×

sinа/(2×

2.2)+M×

cosа/

(2×

3);

N对а求导,则得出N’=M×

cosа/(2×

2.2)-M×

sinа/(2×

3),当N’=0时可以得出其极值,则可得tgа=3/2.2时出现最不利工况。

即sinа=0.8065,cosа=0.5914。

则有:

Mx=Mmax×

cosа=2026.46×

0.5914=1198.45kN·

m,My=Mmax×

sinа=2026.46×

0.8065=1634.34kN·

经计算得到单桩桩顶竖向力设计值

最大压力:

Nmax=1665.60/4+(1198.45×

3)/(2×

32)+(1634.34×

2.2)/(2×

2.22)=987.58kN

最小压力:

Nmi=1443.12/4-(1198.45×

32)-(1634.34×

2.22)=-210.4kN

需要验算桩基础抗拔力。

○3桩顶剪力的计算

V0=V/4=89.23/4=22.31kN

(2)、格构柱顶竖向力的计算(取下述工况中的大者)

格构柱受力明显小于桩顶,按照桩顶受力数据进行计算。

4.2.2塔吊与承台连接的螺栓验算

按照塔吊说明书要求设置,不再计算。

4.2.3承台验算(下述验算荷载取数均大于设计值)

1、承台弯矩的计算

依据《建筑桩技术规范》(JGJ94-2008)的第5.9.1条。

Mx1=∑Niyi

My1=∑Nixi

其中Mx1,My1-计算截面处XY方向的弯矩设计值;

xi,yi-单桩相对承台中心轴的XY方向距离取(a-B)/2=(3.00-1.60)/2=0.700m;

(取

最不利值)

Ni1-单桩桩顶竖向力设计值去除单根格构柱重量荷载;

(Mx1,My1)max=2×

0.7×

(1429.63-32.53)=1955.94kN·

m。

2、承台截面主筋的计算

依据《混凝土结构设计规范》(GB50010-2002)第7.2条受弯构件承载力计算。

As=M/(γsh0fy)

αs=M/(α1fcbh02)

ζ=1-(1-2αs)1/2

γs=1-ζ/2

αl-系数,当混凝土强度不超过C50时,α1取为1.0,当混凝土强度等级为C80时,α1取为0.94,期间按线性内插法得1.00;

fc-混凝土抗压强度设计值查表得19.10N/mm2;

ho-承台的计算高度ho=1200.00-25.00=1175.00mm;

fy-钢筋受拉强度设计值,fy=300N/mm2;

经过计算得:

αs=935.62×

106/(1.000×

19.100×

4.500×

103×

(1175.000)2)=0.0105;

ξ=1-(1-2×

0.0105)0.5=0.0106;

γs=1-0.0106/2=0.995;

Asx=Asy=1955.94×

106/(0.995×

1175.000×

300)=5431mm2;

由于最小配筋率为0.15%,所以最小配筋面积为:

1200×

3500×

0.15%=6300mm2;

建议配筋值:

HRB335钢筋,20@160。

承台底面单向根数21根。

实际配筋值6598.2mm2。

3、承台斜截面抗剪切计算

依据《建筑桩技术规范》(JGJ94-2008)的第5.9.9、5.9.10条。

根据第二步的计算方案可以得到XY方向桩对矩形承台的最大剪切力,考虑对称性,记为V=893.80kN。

我们考虑承台配置箍筋的情况,斜截面受剪承载力满足下面公式:

γ0V≤βfcb0h0

其中:

γo-建筑桩基重要性系数,取1.00;

Bc-承台计算截面处的计算宽度,Bc=4500.00mm;

ho-承台计算截面处的计算高度,ho=1200.00-25.00=1175.00mm;

λ-计算截面的剪跨比,λ=a/ho,此处,

a=(4500.00/2-1650.00/2)-(4500.00/2-3000.00/2)=675.00mm,

当λ<

0.25时,取λ=0.25;

当λ>

3时,取λ=3;

此处得λ=0.574;

β-剪切系数,当0.3≤λ<1.4时,β=0.12/(λ+0.3);

当1.4≤λ≤3.0时,β=0.2/(λ+1.5),得β=0.137;

fc-混凝土轴心抗压强度设计值,fc=19.10N/mm2;

则,1.00×

(1429.63-32.53)=1397.10kN≤0.137×

19.10×

4500.00×

1175.00/1000=13835.80kN;

经过计算承台已满足抗剪要求,只需构造配箍筋!

4.2.4单肢格构柱截面验算(下述验算荷载取数均大于设计值)

1、格构柱力学参数L140x14

A=37.57cm2i=4.28cmI=688.81cm4z0=3.98cm

每个格构柱由4根角钢L140x14组成,格构柱力学参数如下:

Ix1=[I+A×

(b1/2-z0)2]×

4=[688.81+37.57×

(47.00/2-3.98)2]×

4=60016.49cm4;

An1=A×

4=37.57×

4=150.28cm2;

W1=Ix1/(b1/2-z0)=60016.49/(47.00/2-3.98)=3074.62cm3;

ix1=(Ix1/An1)0.5=(60016.49/150.28)0.5=19.98cm;

2、格构柱平面内整体强度

Nmax/An1=1429.63×

103/(150.28×

102)=95.13N/mm2<

f=300N/mm2;

格构柱平面内整体强度满足要求。

3、格构柱整体稳定性验算L0x1=lo=10.60m;

λx1=L0x1×

102/ix1=10.60×

102/19.98=53.04;

单肢缀板节间长度:

a1=0.80m;

λ1=L1/iv=80.00/2.75=29.09;

λ0x1=(λx12+λ12)0.5=(53.042+29.092)0.5=60.50;

查表:

Φx=0.80;

Nmax/(ΦxA)=1429.63×

103/(0.80×

150.28×

102)=123.98N/mm2<

f=300N/mm2;

格构柱整体稳定性满足要求。

4、刚度验算

λmax=λ0x1=60.50<

[λ]=150满足;

单肢计算长度:

l01=a1=80.00cm;

单肢回转半径:

i1=4.28cm;

单肢长细比:

λ1=l01/i1=80.00/4.28=18.69<

0.7λmax=0.7×

60.50=42.35;

因截面无削弱,不必验算截面强度。

分肢稳定满足要求。

4.2.5整体格构柱基础验算(下述验算荷载取数均大于设计值)

1、格构柱基础力学参数单肢格构柱力学参数:

Ix1=60016.49cm4An1=150.28cm2

W1=3074.62cm3ix1=19.98cm

格构柱基础是由四个单肢的格构柱组成的,整个基础的力学参数:

Ix2=[Ix1+An1×

(b2×

102/2-b1×

102/2)2]×

4=[60016.49+150.28×

(2.20×

102/2-0.47×

102/2)2]×

4=4737796.07cm4;

An2=An1×

4=150.28×

4=601.12cm2;

W2=Ix2/(b2/2-b1/2)=4737796.07/(2.20×

102/2)=54772.21cm3;

ix2=(Ix2/An2)0.5=(4737796.07/601.12)0.5=88.78cm;

2、格构柱基础平面内整体强度

N/An+Mx/(γx×

W)=2050.60×

103/(601.12×

102)+1429.63×

106/(1.0×

54772.21×

103)=83.61

N/mm2<

格构式基础平面内稳定满足要求。

3、格构柱基础整体稳定性验算L0x2=lo=10.60m;

λx2=L0x2/ix2=10.60×

102/88.78=11.94;

An2=601.12cm2;

Ady2=2×

10.67=21.34cm2;

λ0x2=(λx22+40×

An2/Ady2)0.5=(11.942+40×

601.12/21.34)0.5=35.63;

φx=0.92;

NEX'

=π2EAn2/1.1λ0x22

NEX=87532.35N;

N/(φxA)+βmxMx/(Wlx(1-φxN/NEX))≤f

N/(φxA)+βmxMx/(Wlx(1-φxN/NEX))=27.00N/mm2≤f=300N/mm2;

格构式基础整体稳定性满足要求。

λmax=λ0x2=35.63<

单肢计算长度:

l02=a2=200.00cm;

ix1=19.98cm;

λ1=l02/ix1=200.00/19.98=10.01<

35.63=24.94;

刚度满足要求。

4.2.6桩承载力验算

桩承载力计算依据《建筑桩技术规范》(JGJ94-2008)的第4.1.1条。

根据以上的计算方案可以得到桩的轴向压力设计值,取其中最大值;

N=987.58kN;

桩顶轴向压力设计值应满足下面的公式:

γ0N≤fcA

其中,γo-建筑桩基重要性系数,γo=1.00;

fc-混凝土轴心抗压强度设计值,fc=14.30N/mm2;

A-桩的截面面积,A=πd2/4=0.50m2;

987.58=987.58kN<

14.30×

0.50×

103=7150.00kN;

经过计算得到桩顶轴向压力设计值满足要求,只需构造配筋!

4.2.7桩竖向极限承载力验算

1.桩的极限承载力计算

桩承载力计算依据《建筑桩基础技术规范》(JGJ94-2008)的第5.3.5条

各土层厚度及阻力标准值如下表:

由于桩的入土深度为22.00m,所以桩端是在第4层土层。

根据土的物理指标与承载力参数之间的关系

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 小学教育 > 语文

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2