大孔吸附树脂Word下载.docx

上传人:b****1 文档编号:5747042 上传时间:2023-05-05 格式:DOCX 页数:17 大小:152.61KB
下载 相关 举报
大孔吸附树脂Word下载.docx_第1页
第1页 / 共17页
大孔吸附树脂Word下载.docx_第2页
第2页 / 共17页
大孔吸附树脂Word下载.docx_第3页
第3页 / 共17页
大孔吸附树脂Word下载.docx_第4页
第4页 / 共17页
大孔吸附树脂Word下载.docx_第5页
第5页 / 共17页
大孔吸附树脂Word下载.docx_第6页
第6页 / 共17页
大孔吸附树脂Word下载.docx_第7页
第7页 / 共17页
大孔吸附树脂Word下载.docx_第8页
第8页 / 共17页
大孔吸附树脂Word下载.docx_第9页
第9页 / 共17页
大孔吸附树脂Word下载.docx_第10页
第10页 / 共17页
大孔吸附树脂Word下载.docx_第11页
第11页 / 共17页
大孔吸附树脂Word下载.docx_第12页
第12页 / 共17页
大孔吸附树脂Word下载.docx_第13页
第13页 / 共17页
大孔吸附树脂Word下载.docx_第14页
第14页 / 共17页
大孔吸附树脂Word下载.docx_第15页
第15页 / 共17页
大孔吸附树脂Word下载.docx_第16页
第16页 / 共17页
大孔吸附树脂Word下载.docx_第17页
第17页 / 共17页
亲,该文档总共17页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

大孔吸附树脂Word下载.docx

《大孔吸附树脂Word下载.docx》由会员分享,可在线阅读,更多相关《大孔吸附树脂Word下载.docx(17页珍藏版)》请在冰点文库上搜索。

大孔吸附树脂Word下载.docx

可实现工业生产中有害物质回收再用、化害为利、变废为宝的目的

美国的Kunin教授发明了大孔网状聚合物吸附,并在1966年研制成功了第一个大网格吸附剂,此后这项技术迅速发展,目前国内外的很多性能优良的产品也已经相继问世,如下表所示:

表1-1常用国产大孔树脂的型号和主要特性【2】

树脂

极性

结构

粒径范围

(mm)

比表面积

(m2/g)

平均孔径

(nm)

用途

S-8

交联聚苯乙烯型

0.3~1.25

100~120

28~30

有机物提取分离

AB-8

弱极性

480~520

13~14

有机物提取,甜菊糖、银杏叶黄铜提取

X-5

非极性

500~600

29~30

抗生素、中草药提取

NKA-2

160~200

145~155

酚类、有机物去除

NKA-9

250~290

15~16.5

胆红素去除,生物碱分离、黄酮类提取

H103

0.3~0.6

1000~1100

85~95

抗生素提取分离,去除酚类,氯化物

D-101

苯乙烯型

中草药中皂甙、黄酮、内酯、萜类及天然色素的提取

HPD100

0.3~1.2

650

90

天然物提取分离,如人参皂苷、三七皂苷

HPD400

中极性

550

83

中药复方提取、氨基酸、蛋白质提纯

HPD600

85

银杏黄酮、甜菊苷、茶多酚、黄芪苷

ADS-5

20~25

分离天然产物中的苷类、生物碱、黄酮等

ADS-7

强极性

含氨基

200

提取分离糖苷,对甜菊苷、人参皂苷、绞股蓝皂苷等具高选择性,去除色素

ADS-8

450~550

25.0

分离生物碱,如喜树碱、苦参碱

ADS-17

124

高选择分离银杏黄酮苷和银杏内酯

表1-2国外HP、SP系类大孔树脂的型号和主要特性【2】

HP-20

聚苯乙烯

0.2~0.6

600

46

皂苷、黄酮、萜类、天然色素、蛋白质(相对分子质量〉1000)

HP-207

630

10.5

HP2MG

甲基丙烯酸酯

470

17

SP825

1000

5.7

生物碱、黄酮、内酯、酚性苷(相对分子质量〉1000)

SP850

3.8

SP70

800

7.0

SP700

1200

9.3

XAD-1

苯乙烯

100

20

分离甘草类黄酮、甘草酸、叶绿素

XAD-2

330

9

人参皂苷提取,去除色素

XAD-4

750

5

麻黄碱提取,除去小分子非极性物

XAD-6

丙烯酸酯

498

6.3

分离麻黄碱

XAD-9

亚砜

250

8

挥发性香料成分分离

XAD-11

氧化氮类

170

21

提取分离合欢皂苷

XAD-1600

0.40

0.15

提取小分子抗生素和植物有效成分

XAD-1180

0.53

700

提取大分子抗生素、维生素、多肽

XAD-7HP

0.56

500

0.45

提取多肽和植物色素、多酚类物质

1.2大孔吸附树脂的种类及用途

1.D101大孔吸附树脂

大孔吸附树脂是一种具有多孔海绵状结构人工合成的聚合物吸附剂,依靠树脂骨架和被吸附的分子(吸附质)之间的范德华力,通过树脂巨大的比表面积进行物理吸附而达到从水溶液中分离提取水溶性较差的有机大分子的目的。

采用大孔吸附树脂提取中草药有效成分如皂甙类、黄酮类、生物碱类,具有操作简便、成本较低、树脂可反复使用等优点,适于工业化规模生产。

D101树脂是一种非极性吸附剂,比表面积为480~530m2/g。

用途:

绞股蓝皂甙、三七皂甙、喜树碱等皂甙和生物碱提取。

2.D101B大孔吸附树脂

弱极性吸附剂,比表面积450~500m2/g。

是D101树脂的补充和改进,虽然比表面积略小于D101,但由于树脂内部孔表面带有弱极性基团,对于水溶性差从水相扩散到树脂相阻力较大的黄酮类有机物吸附速度快,吸附量大。

银杏黄酮、茶多酚、黄芪甙等的提取。

3.XDA-1大孔吸附树脂

铁塔牌XDA-1大孔吸附树脂是一种高交联度、高比表面积、不带有官能团的非极性聚合物吸附剂。

其连续的聚合物相和连续的孔结构赋予其优异的吸附性能。

XDA-1的聚合物结构使其具有优良的物理、化学和热稳定性。

根据被吸附介质的不同性质,XDA-1可用丙酮、甲醇、或稀碱溶液再生,反复使用于循环的工业过程中。

XDA-1主要用苯酚生产企业、染化中间体生产企业、和其它化工、医药、农药生产企业。

还可以从含有大量无机盐的水溶液中分离除去苯胺类、氯化苄、苄醇、氯代苯、山梨酸、卤代烃类等有机化合物,也可用于其它极性溶剂中非极性介质的富集。

4.XDA-1B大孔吸附树脂

带有弱极性基团的吸附剂,比表面积500~600m2/g。

是XDA-1树脂的补充和改进,虽然比表面积小于XDA-1,但由于树脂内部孔表面带有弱极性基团,对于水溶性差从水相扩散到树脂相阻力较大的有机物吸附速度快,吸附量大。

5.XDA-7均孔脱色树脂

采用特定交联剂和工艺合成的XDA-7均孔脱色专用树脂,是带有季胺基团的强碱性树脂。

具有交联结构均匀,孔径分布范围窄,平均孔径大的特点,适于脱除分子量在200~10000之间带有负电荷的色素和大分子有机物。

也可用于具有一定疏水性的电中性色素分子的吸附和脱附。

XDA-7树脂对色素的选择性强,再生容易,受到有机污染后易于复苏。

XDA-7广泛地应用于抗生素精制、生化产品提取、食品、化工等工业过程中。

6.H-10双氧水脱有机炭

白色不透明球状颗粒,非极性吸附剂,在双氧水中有良好的稳定性,比表面积830~850m2/g。

能够有效去除双氧水中的蒽醌类化合物,大幅度降低双氧水有机碳含量。

处理后的双氧水可直接用于织物漂白。

与H-10A、H-10B配合使用,可将双氧水中的有机碳、金属离子全部除去,制备高纯双氧水,达到微电子工业用标准。

7.H-20皂甙类、生物碱等中草药有效成分提取

白色不透明球状颗粒,非极性吸附剂,比表面积520~560m2/g。

用于皂甙类、生物碱类提取。

8.H-30甜菊甙提取,有机物提取分离

白色不透明球状颗粒,弱极性吸附剂,比表面积480~520m2/g。

适用于甜菊甙、黄酮类提取。

9.H-40水处理中用作有机物清扫剂

白色不透明球状颗粒,弱极性吸附剂,比表面积460~510m2/g。

在COD高于20ppm的水处理过程中用在离子交换柱前作为保护柱,使后面的离子交换柱免受有机物污染。

10.H-50白酒类高级脂肪酸酯去除

白色不透明球状颗粒,非极性吸附剂,比表面积400~430m2/g。

中高度白酒由于酒精度高,其中的高级脂肪酯不易析出。

30度以下的低度白酒由于酒精低,低温下高级脂肪酸酯如油酸乙酯、亚油酸乙酯、棕榈酸乙酯析出,影响酒的外观。

低度酒通过H-50可以除去低度酒中的高级脂肪酸酯而不影响酒的风味。

11.H-60生物碱、黄酮类提取

白色不透明球状颗粒,弱极性吸附剂,比表面积540~580m2/g。

适于生物碱、黄酮类有机物的提取。

1.3大孔吸附树脂分离柱层析技术

树脂分离在工业上应用最多的还是柱层析技术。

其机理如图1-1所示。

图1-1亲和柱层析机理图

在运用打孔吸附树脂柱色谱进行分离精制时,其操作步骤为树脂的预处理→树脂装柱→药液上柱吸附→树脂的解析→树脂的清洗、再生。

其大致过程如图1-2。

1.树脂的预处理由于树脂出厂前没有经过彻底清洗,经常残留一些致孔剂、小分子聚合物、原料单体、分散剂以及防腐剂等有机残留物。

另外树脂也常因失水而缩孔。

因此用前必须进行预处理。

可将新购的树脂用乙醇浸泡24h,充分溶胀,装柱,用适量乙醇冲洗,而后改用大量清水冲洗备用。

2.树脂装柱通常以水为溶剂湿法装柱。

先在树脂柱的底部放一些脱脂棉或玻璃丝,厚度1-2cm即可,用玻璃棒压平。

在树脂中加少量水,搅拌后倒入保持垂直的色谱柱中,使其自然沉降,让水流出,注意不要干柱,以免气泡进入,影响分离效果。

3.药液的上柱吸附药液上柱前应为澄清溶液,否则会影响树脂吸附,一般要从上部加入,流速也要控制好,太快会不利于吸附,太慢效率太低。

4.树脂的解析样品滴加完毕后就可以洗脱,通常用水洗脱,继而用醇-水洗脱,逐步加大醇的浓度,同时配合检测,相同纯度者合并,流速要适当,一般1-2BV/h。

5.树脂的再生树脂经多次使用后吸附能力会有所减弱,在表面和内部残留一些杂质,需再生后才能继续使用。

图1-2柱层析原理图

2大孔吸附树脂分离技术原理及影响因素

2.1大孔吸附树脂吸附原理

  大孔吸附树脂的吸附实质为一种物体高度分散或表面分子受作用力不均等而产生的表面吸附现象, 

这种吸附性能是由于范德华引力或生成氢键的结果。

同时由于大孔吸附树脂的多孔结构使其对分子大小不同的物质具有筛选作用。

通过上述这种吸附和筛选原理,有机化合物根据吸附力的不同及分子量的大小,在大孔吸附树脂上经一定溶剂洗脱而达到分离、纯化、除杂、浓缩等不同目的。

  吸附树脂的表面发生吸附作用后,会使树脂表面上溶质的浓度高于溶剂内溶质的浓度,其结果引起体系内放热和自由能的下降。

一般说来,吸附分为物理吸附和化学吸附两大类。

图2-1亲和层析法的原理图

2.2影响吸附率的因素

吸附树脂对有机物的去除效果与树脂本身的结构性质、吸附质的结构以及吸附处理过程中的操作条件有着密切的关系。

1.大孔吸附树脂极性的影响

遵从类似物吸附类似物的原则,根据吸附物质的极性大小选择不同类型的大孔吸附树脂。

极性较大的化合物一般适用于在中极性的树脂上分离;

极性小的化合物适用于在非极性的树脂上分离。

极性大小是一个相对概念,要根据分子中基团(如羟基)与非极性基团(如烷基、苯环、环烷母核等)的数量与大小来确定;

对于未知化合物,可通过一定的预试验及TLC而大致确定。

2.大孔吸附树脂孔径的影响

大孔吸附树脂是多孔性物质,其孔径特性可用比表面积(S)、孔体积(V)和计算所得的平均半径(r)来表征。

假定孔道为圆柱形,则三者关系r=2V/S,V可由压汞仪测得,S可由比表面积测定仪测得。

被分离成分通过树脂的孔道而扩散到树脂的内表面而被吸附。

大孔吸附树脂孔径的大小,直接影响不同大小的分子自由进入,从而使树脂具有选择性。

因此,只有当孔径对于被分离成分足够大时,比表面积才能充分发挥作用,即大孔吸附树脂比表面积越高,而平均孔径小。

其吸附速度越慢,解吸越不够集中,杂质的分离效果也就越差。

3.大孔吸附树脂强度的影响

大孔吸附树脂强度与孔隙率有直接关系,也和制备工艺有关。

这类树脂在酸碱中体积变化不大,在溶媒中则有一定程度的溶胀。

一般大孔吸附树脂孔隙率越高,孔体积越大,则强度越差。

大孔吸附树脂的强度直接影响树脂的使用寿命,从而影响着大孔吸附树脂法工艺的成本。

4.吸附流速的影响

对于同一浓度的上样溶液,吸附流速过大,树脂的吸附量就会降低。

但吸附流速过小,吸附时间就会增加,在实际应用中,应综合考虑来确定最佳吸附流速,既要使大孔吸附树脂的吸附效果好,又要保证较高的工作效率。

5.温度的影响

物理吸附和化学吸附都是放热过程,所以只要吸附已经达到平衡,增加温度无论是物理吸附量还是化学吸附量都会降低。

但是由于化学吸附在低温时往往末达到平衡,而升高温度会使吸附速度增快,所以对于化学吸附来说,在低温时常会出现吸附量随温度升高而增加的情况,直到真正达到平衡以后,吸附量才又随温度升高而下降。

6.其它组分存在时的影响

当溶液中存在二种以上溶质时,往往会引起一种溶质易吸附而使另一种溶质的吸附量降低,一般来讲,对混合溶质的吸附较纯溶质的吸附效果差。

3.大孔吸附树脂的应用

3.1对中草药有效成分的提取

3.1.1黄酮(甙)类 最有代表性的是银杏叶提取物(GBE)。

国外用溶剂萃取法提取[3],工艺步骤较长,溶剂消耗量大,其质量标准是黄酮甙含量≥24%,萜内酯含量≥6%[4]。

陈冲等[5]应用大孔树脂提取GBE,既达到其质量标准,又降低了成本。

他们将银杏叶用65%乙醇回流提取,减压浓缩,加ZTC澄清剂水沉降后,再将水沉降液上大孔树脂柱,用pH=3水洗涤13倍量,pH=3的25%乙醇洗涤7.5倍量,然后用70%乙醇洗脱,减压浓缩,喷雾干得到淡黄色的银杏叶提取物,其黄酮含量稳定在26%以上,内酯含量稳定在6%以上。

史作清等[6]又研制出ADS-17、ADS-21、ADS-F8等大孔树脂,使GBE的生产具有更大的灵活性,其中ADS-17对黄酮类化合物具有很好的选择性,可得到黄酮甙含量较高的GBE。

3.1.2皂甙类和其它甙类 此类物质应用大孔树脂提取分离的文献报道比较多。

刘中秋等[7]研究了用大孔树脂富集纯化毛冬青总皂甙的工艺条件及参数,他们取毛冬青样品液47ml(6.43g/ml)上大孔树脂柱,用蒸馏水100ml,50%乙醇100ml依次洗脱,毛冬青总皂甙富集于50%乙醇洗脱液中,且除杂质能力强,洗脱率达95%,50%乙醇洗脱液干燥后总固物中毛冬青总皂甙纯度可达57.5%。

3.1.3生物碱类 生物碱的提取可用阳离子交换树脂,但酸、碱或盐类洗脱剂会给后面的分离造成麻烦,用大孔树脂可避免引入外来杂质的问题[8]。

如用AB-8大孔树脂提取喜树碱,可直接得到含量约50%左右的产品,重结晶后喜树碱的含量可达90%[8]。

生物碱的提取还可以采用醇沉法、澄清法和超滤法,张保献等[9]采用这三种方法与大孔树脂法对苦参水提取液进行了精制,其中大孔树脂法为:

取苦参水提液上清液900ml,均分为9份,每份100ml,相当于100g生药,分别离心(2500r/min)后倾出上清液,加适量蒸馏水返溶沉淀部分,离心,合并两次离心液,加入适量蒸馏水,混匀后上大孔树脂柱。

待药液流完后,加入一倍生药量蒸馏水冲柱,待蒸馏水流完后,用4倍生药量的不同浓度乙醇洗脱,乙醇浓度分别为50%、60%、70%,每一浓度平行各做3份。

洗脱液回收乙醇,浓缩并真空干燥成干浸膏。

他们以苦参总生物碱的含量为指标,对4种精制方法进行了比较研究,结果4种方法精制后,苦参总生物碱的含量的高低顺序为:

醇沉法(10.61mg/g)>

澄清法(4.40mg/g)>

超滤法(3.05mg/g)>

大孔树脂法(2.11mg/g),因此,苦参总生物碱的精制方法宜采用醇沉法。

3.1.4 其它有效成分的提取胆红素:

刘荣华等研究了CDA-40大孔树脂提取胆红素的工艺。

他们采用正交试验法,以胆红素的提取率为考查指标,对提取工艺进行了筛选,得出最佳工艺流程为[10]:

3.2其他方面的应用

对于甜菊糖的分离纯化,国外有很多利用XAD-7树脂去除色素的报道[11]。

此外,大孔吸附树脂在血液灌流、酶的固定化、氨基酸蛋白质的分离[12]、抗生素的分离提纯、废水处理、升化物质的分离、葡萄糖的分离[13]、医疗卫生、食品应用等也有很多应用。

4.大孔吸附树脂分离技术的展望

大孔树脂吸附分离工艺所得提取物体积小、不吸潮,容易制成外型美观的各种剂型,尤其适用于颗粒剂、胶囊剂和片剂,使中药的粗、大、黑制剂升级换代为现代制剂。

  就大孔树脂吸附技术自身而言,它工艺操作简便,不十分繁琐,难度不大,并且树脂可多次使用,也可再生反复使用,成本不是很高,设备较简单,而且这种工艺可以节约大量的能耗、辅料、包装材料、贮藏、运输等费用。

  目前,大孔树脂吸附技术广泛地应用于西药的生产中,在我国,中药研究和生产中探索应用大孔树脂吸附技术企业也越来越多,像四川泰华堂制药有限公司,成都地奥制药股份有限公司就已应用。

扬子江药业集团也运用该技术生产银杏制剂。

北京市生产西药的厂家应用较为普遍,同仁堂制药厂也正在试用。

应该有很广阔的推广前景。

参考文献

[1]王跃生王 洋.大孔吸附树脂研究进展[J].中国中药杂志,2006,31(12):

961-965

[2]周晶,冯淑华.中药提取分离新技术[M].北京:

科学出版社,2010

[3]SchwabeW,KlossP.VasoactivedrugsfromGinkgobilobaleaves[P].DE:

1767098,1971-10-12

[4]TerisA,VanBeek.AnalysisandqualitycontrolofGink-gobilobaleavesandstandarisedextracts[A].Proceed-ingsof97internationalseminaronGinkgo[C].China:

beijing,1997.158.

[5]钱庭宝.吸附树脂及其应用.化学工业出版社,1990

[6]王芝祥吸附树脂及其在天然产物中的应用上海医药工业研究院,2003

[7]史作清,施荣富.吸附树脂研究进展[A].中国化学会第十一届反应性高分子(离子交换与吸附)学术研讨会会议论文摘要预印集[C].2001.

[8]江邦和,邬行彦.离子交换与吸附树脂的应用[J].离子交换与吸附,2001,

[9]高柳小时,宫田非离子型吸附树脂分离加工天然产物研究[J]。

威利父子公司,1996.

[10]安达笔,吸附树脂的表征与合成吸附剂制备规模的色谱分离研究[J]。

2002,

[11]江邦和,胡效忠,邬行彦.离子交换与吸附树脂在中药有效成分提取中的应用[J].离子交换与吸附,2001,

[12]李剑君,李稳宏,高新,等.AB-8型大孔吸附树脂吸附葛根素过程的研究[J].西安交通大学学报,2000,

[13]杨越雄,陈文峰,.HA型大孔吸附树脂及活性炭对胆红素吸附性能的研究[J].离子交换与吸附,2001,

[14]周跃华.大孔吸附树脂在中药成分精制纯化中的应用[J].中成药,2002,

[15]朱惠刚.水中有机化学污染物对人体影响评价,中国环境科学2006

[16]许景文.离子交换树脂技术在饮用水处理中的应用,净水技术1999

[17]KoteshK.Jonnala,Palampur(IN);

BabuGarikapatiD.Kiran,Palampur(IN);

VijayK.Kaul,Palampur(IN);

ParamvirS.Ahuja,Palampur(IN).PROCESSFORPRODUCTIONOFSTEVIOSIDESFROMSTEVIAREBAUDIANABERTONI[P].Pub.No.:

US2006/0142555Al

[18]KaufmanDB,HayesT,BetterJ,etal.ChromatographicresolutionoftryptophanenantiomerswithL-Leu-L-Leu-L-Leupeptideeffectsofmobilephasecompositionandchromato

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2