半导体激光器的工作原理及应用Word下载.docx

上传人:b****2 文档编号:5949968 上传时间:2023-05-05 格式:DOCX 页数:11 大小:26.41KB
下载 相关 举报
半导体激光器的工作原理及应用Word下载.docx_第1页
第1页 / 共11页
半导体激光器的工作原理及应用Word下载.docx_第2页
第2页 / 共11页
半导体激光器的工作原理及应用Word下载.docx_第3页
第3页 / 共11页
半导体激光器的工作原理及应用Word下载.docx_第4页
第4页 / 共11页
半导体激光器的工作原理及应用Word下载.docx_第5页
第5页 / 共11页
半导体激光器的工作原理及应用Word下载.docx_第6页
第6页 / 共11页
半导体激光器的工作原理及应用Word下载.docx_第7页
第7页 / 共11页
半导体激光器的工作原理及应用Word下载.docx_第8页
第8页 / 共11页
半导体激光器的工作原理及应用Word下载.docx_第9页
第9页 / 共11页
半导体激光器的工作原理及应用Word下载.docx_第10页
第10页 / 共11页
半导体激光器的工作原理及应用Word下载.docx_第11页
第11页 / 共11页
亲,该文档总共11页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

半导体激光器的工作原理及应用Word下载.docx

《半导体激光器的工作原理及应用Word下载.docx》由会员分享,可在线阅读,更多相关《半导体激光器的工作原理及应用Word下载.docx(11页珍藏版)》请在冰点文库上搜索。

半导体激光器的工作原理及应用Word下载.docx

光场;

同质结;

异质结;

大功率半导体激光器

Theworkingprincipleofsemiconductorlasersandapplications

ABSTRACT:

Themachanismoflasingbysemiconductorlaser,whichrequiressetupspeciallydesignatedreverseofbeamofparticlesamongenergystages,andappropriateopticalsyntoniccoelenteronAsthespecificityofstructurefromsemiconductorandmovingelectrons.somethinginterestinghappens.Ontheonehand,thespecificprocessinproducinglase,ontheotherhand,thebeamoflighthasuniqueadvantages.Asthereasonsabove,wecaneasilyfounditallquartersofthesociety.Fromhomojunctiontoheterojunction,frominformaticstopower,theadvantagesoflaserareinevidence,thewidespectrum,thesemiconductoropentheepochintheprocessoflaser.

Keyworlds:

stimulatedradiation;

opticalfield;

homojunction;

heterojunction;

high-powersemiconductorlaser

0前言

半导体激光器是指以半导体材料为工作物资的激光器,又称半导体激光二极管(LD),是20世纪60年代发展起来的一种激光器.半导体激光器的工作物资有几十种,例如砷化镓(GaAs)、硫化镉(CdS)等,激励方式次要有电注入式、光泵式和高能电子束激励式三种.半导体激光器从最初的低温(77K)下运转发展到室温下连续工作;

从同质结发展成单异质结、双异质结、量子阱(单、多量子阱)等多种方式.半导体激光器因其波长的扩展、高功率激光阵列的出现和可兼容的光纤导光和激光能量参数微机控制的出现而敏捷发展.半导体激光器的体积小、分量轻、成本低、波长可选择,其利用广泛临床、加工建造、军事,其中尤以大功率半导体激光器方面取得的进展最为突出.

1半导体激光器的工作道理

1.1激光发生道理

半导体激光器是一种相关辐射光源,要使它能发生激光,必须具备三个基本条件:

(1)增益条件:

建立起激射媒质(有源区)内载流子的反转分布,在半导体中代表电子能量的是由一系列接近于连续的能级所构成的能带,是以在半导体中要实现粒子数反转,必须在两个能带区域之间,处在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠给同质结或异质结加正向偏压,向有源层内注人须要的载流子来实现.将电子从能量较低的价带激发到能量较高的导带中去.当处于粒子数反转形态的大量电子与空穴复合时,便发生受激发射感化.

(2)要实际获得相关受激辐射,必须使受激辐射在光学谐振腔内得到多次反馈而构成激光振荡,激光器的谐振腔是由半导体晶体的天然解理面作为反射镜构成的,通常在不出光的那一端镀上高反多层介质膜,而出光面镀上减反膜.对F—p腔(法布里一珀罗腔)半导体激光器可以很方便地利用晶体的与P—n结平面相垂直的天然解理面一[110]面构成F—P腔.

(3)为了构成波动振荡,激光媒质必须能提供足够大的增益,以弥补谐振腔惹起的光损耗及从腔面的激光输出等惹起的损耗,不竭添加腔内的光场.这就必必要有足够强的电流注入,即有足够的粒子数反转,粒子数反转程度越高,得到的增益就越大,即请求必须满足必定的电流阀值条件.当激光器达到阀值时,具有特定波长的光就能在腔内谐振并被放大,最初构成激光而连续地输出.

可见在半导体激光器中,电子和空穴的偶极子跃迁是基本的光发射和光放大过程.对于新型半导体激光器而言,人们目前公认量子阱是半导体激光器发展的根本动力.量子线和量子点能否充分利用量子效应的课题已延至本世纪,科学家们已测验考试用自组织结构在各种材料中建造量子点,而GaInN量子点已用于半导体激光器.另外,科学家也曾经做出了另一类受激辐射过程的量子级联激光器,这类受激辐射基于从半导体导带的一个次能级到同一能带更低一级形态的跃迁,因为只要导带中的电子介入这类过程,是以它是单极性器件.

1.2半导体激光器的工作特性

1阈值电流.

当注入p-n结的电流较低时,只要自觉辐射发生,随电流值的增大增益也增大,达阈值电流时,p-n结发生激光.影响阈值的几个身分:

  

(1)晶体的掺杂浓度越大,阈值越小.

(2)谐振腔的损耗小,如增大反射率,阈值就低.

(3)与半导体材料结型有关,异质结阈值电流比同质结低得多.目前,室温下同质结的阈值电流大于30000A/cm2;

单异质结约为8000A/cm2;

双异质结约为1600A/cm2.此刻已用双异质结制成在室温下能连续输出几十毫瓦的半导体激光器.

(4)温度愈高,阈值越高.100K以上,阈值随T的三次方添加.是以,半导体激光器最好在低暖和室温下工作.

2方向性.

因为半导体激光器的谐振腔短小,激光方向性较差,在结的垂直平面内,发散角最大,可达20°

-30°

在结的水平面内约为10°

摆布.

3效力.

量子效力η=每秒发射的光子数/每秒到达结区的电子空穴对数

77K时,GaAs激光器量子效力达70%-80%;

300K时,降到30%摆布.

功率效力η1=辐射的光功率/加在激光器上的电功率

  因为各种损耗,目前的双异质结器件,室温时的η1最高10%,只要在低温下才干达到30%-40%.

4光谱特性.

因为半导体材料的特殊电子结构,受激复合辐射发生在能带(导带与价带)之间,所以激光线宽较宽,GaAs激光器,室温下谱线宽度约为几纳米,可见其单色性较差.输出激光的峰值波长:

77K时为840nm;

300K时为902nm.

2同质结和异质结激光器

2.1半导体激光器的发展历史

20世纪60年代初期的半导体激光器是同质结型激光器,它是在一种材料上建造的pn结二极管.在正向大电流注入下,电子不竭地向P区注入,空穴不竭地向1"

1区注入.因而,在本来的pn结耗尽区内实现了载流子分布的反转,因为电子的迁移速度比空穴的迁移速度快,在有源区发生辐射、复合,发射出荧

光,在必定的条件下发生激光.这是一种只能以脉冲方式工作的半导体激光器.

半导体激光器发展的第二阶段是异质结构半导体激光器,它是由两种分歧带隙的半导体材料薄层.如GaAs.GaAIAs所构成,最早出现的是单异质结构激光器(1969年).单异质结注入型激光器(SHLD)是利用异质结提供的势垒把注入电子限制在GaAsP—N结的P区以内,以此来降低阀值电流密度,其数值比同质结激光器降低了一个数量级,但单异质结激光器仍不克不及在室温下连续工作.

1970年,实现了激光波长为9000A,室温连续工作的双异质结caAs—GaAIAs(砷化镓一镓铝砷)激光器.双异质结激光器(DHL)的诞生使可用波段不竭拓宽,线宽和调谐功能慢慢提高,其结构的特点是在P型和n型材料之间生长了仅有0.2tt.m厚的,不掺杂的,具有较窄能隙材料的一个薄层,是以注A.00载流

子被限制在该区域内(有源区),因此注人较少的电流就可以实现载流子数的反转.在半导体激光器件中.目前比较成熟、功能较好、利用较广的是具有双异质结构的电注入式GaAs二极管激光器.

随着异质结激光器的研讨发展,加之因为MBE、MOCVD技术的成就,因而,在1978年出现了世界上第一只半导体量子阱激光器(QWL),它大幅度地提高了半导体激光器的各种功能.后来,又因为MOCVD、MBE生长技术的成熟,能生长出高质量超精细薄层材料,以后,便成功地研制出了功能更加良好的量子阱激光器,量子阱半导体激光器与双异质结(DH)激光器比拟,具有阈值电流低、输出功率高,频率呼应好,光谱线窄和温度波动性好和较高的电光转换效力等很多长处.

从20世纪70年代末开始,半导体激光器明显向着两个方向发展,一类是以传递信息为目的的信息型激光器.另一类是以提高光功率为目的的功率型激光器.在泵浦固体激光器等利用的推动下,高功率半导体激光器(连续输出功率在100mw以上,脉冲输出功率在5W以上,均可称之谓高功率半导体激光器)在20世纪90年代取得了突破性进展,其标记是半导体激光器的输出功率明显添加,国外千瓦级的高功率半导体激光器曾经商品化,国内样品器件输出已达到600W【1】.如果从激光波段的被扩展的角度来看,先是红外半导体激光器,接着是670hm红光半导体激光器大量进人利用,接着,波长为650nm、635nm的问世,蓝绿光、蓝光半导体激光器也接踵研制成功,l0mw量级的紫光乃至紫外光半导体激光器,也在加紧研制中【2】.

同质结和异质结半导体激光器功能对照(表)

【3】

名称

制成时间

次要建造方法

突破特性

阈值电流A/㎝2

工作温度

缺点

同质结

1962

扩散法

半导体材料

105

77K脉冲工作

阈值电压过高

单异质结

1967

液相内涵法

脉冲下工作

104

室温脉冲工作

不克不及连续工作

双异质结

1970

连续工作

103

室温连续工作

多纵模发射

2.2异质结激光器的工作过程

半导体激光器的结构多种多样,基本结构是图1示出的双异质结(DH)平面条形结构.

这类结构由三层分歧类型半导体材料构成,分歧材料发射分歧的光波长.图中标出所用材料和近似尺寸.结构两头有一层厚0.1~0.3μm的窄带隙P型半导体,称为有源层;

两侧分别为宽带隙的P型和N型半导体,称为限制层.三层半导体置于基片(衬底)上,前后两个晶体解理面作为反射镜构成法布里-珀罗(FP)谐振腔.

图1双异质结(DH)平面条形激光器的基本结构

(a)短波长;

(b)长波长

DH激光器工作道理(图2)

因为限制层的带隙比有源层宽,施加正向偏压后,P层的空穴和N层的电子注入有源层.P层带隙宽,导带的能态比有源层高,对注入电子构成了势垒,注入到有源层的电子不成能扩散到P层.同理,注入到有源层的空穴也不成能扩散到N层.如许,注入到有源层的电子和空穴被限制在厚0.1~0.3μm的有源层内构成粒子数反转分布,这时候只需很小的外加电流,就可以使电子和空穴浓度增大而提高效益.

另一方面,有源层的折射率比限制层高,发生的激光被限制在有源区内,因此电/光转换效力很高,输出激光的阈值电流很低,很小的散热体就可以在室温连续工作.【4】

图2DH激光器的工作道理

)双异质结构;

(b)能带;

(c)折射率分布;

(d)光功率分布

3半导体激光器的利用

半导体激光器是成熟较早、进展较快的一类激光器,因为它的波长范围宽,建造简单、成本低、易于大量生产,而且因为体积小、分量轻、寿命长,是以,品种发展快,利用范围广,目前已超出300种.半导体激光器的最次要利用领域是Gb局域网,850hm波长的半导体激光器适用于>

1Gh/s局域网,1300hm一1550nto波长的半导体激光器适用于10Gb局域网零碎”1.半导体激光器的利用范围覆盖了全部光电子学领域,已成为当今光电子科学的核心技术.半导体激光器在激光测距、激光雷达、激光通信、激光模拟兵器、激光警戒、激光制导跟踪、引燃引爆、主动控制、检测仪器等方面获得了广泛的利用,构成了广阔的市场.

1978年,半导体激光器开始利用于光纤通信零碎,半导体激光器可以作为光纤通信的光源和唆使器和通过大规模集成电路平面工艺构成光电子零碎.因为半导体激光器有着超小型、高效力和高速工作的优良特点,所以这类器件的发展,一开始就和光通信技术紧密结合在一路,它在光通信、光变换、光互连、并行光波零碎、光信息处理和光存贮、光计算机内部设备的光耦合等方面有次要用处.半导体激光器的问世极大地推动了信息光电子技术的发展,到如今,它是当前光通信领域中发展最快、最为次要的激光光纤通信的次要光源.半导体激光器再加上低损耗光纤,对光纤通信发生了严重影响,并加速了它的发展.是以可以说,没有半导体激光器的出现,就没有当今的光通信.GaAs/GaAIAs双异质结激光器是光纤通信和大气通信的次要光源,如今,凡是长距离、大容量的光信息传输零碎无不都采取分布反馈式半导体激光器(DFB—LD).半导体激光器也广泛地利用于光盘技术中,光盘技术是集计算技术、激光技术和数字通信技术于一体的综合性技术.是大容量、高密度、快速无效和低成本的信息存储手段,它须要半导体激光器发生的光束将信息写入和读出.

上面我们具体来看看几种经常使用的半导体激光器的利用:

量子阱半导体大功率激光器在精密机械零件的激光加工方面有次要利用,同时同样成为固体激光器最理想的、高效力泵浦光源.因为它的高效力、高可靠性和小型化的长处,导致了固体激光器的不竭更新-在印刷业和医学领域,高功率半导体激光器也有利用.另外,如长波长激光器(1976年,人们用GaInAsP/lnP实现了长波长激光器)用于光通信,短波长激光器用于光盘读出.自从NaKamura实现了GatnN/QaN蓝光激光器,可见光半导体激光器在光盘零碎中得到了广泛利用,如cD播放器,DVD零碎和高密度光存储器.可见光面发射激光器在光盘、打印机、显示器中都有着很次要的利用,特别是红光、绿光和蓝光面发射激光器的利用更广泛.蓝绿光半导体激光器用于水下通信、激光打印、高密度信息读写、深水探测及利用于大屏幕黑色显示和高清晰度黑色电视机中.总之,可见光半导体激光器在用作黑色显示器光源、光存贮的读出和写入,激光打印、激光印刷、高密度光盘存储零碎、条码读出器和固体激光器的泵浦源等方面有着广泛的用处.量子级联激光的新型激光器利用于环境检测和医检领域.另外,因为半导体激光器可以通过改变磁场或调节电流实现波长调谐,且曾经可以获得线宽很窄的激光输出,是以利用半导体激光器可以进行高分辨光谱研讨.可调谐激光器是深入研讨物资结构而敏捷发展的激光光谱学的次要工具.大功率中红外(3—5邮,)LD在红外对抗、红外照明、激光雷达、大气窗121、自在空闻通信、大气监

视和化学光谱学等方面有广泛的利用.

绿光到紫外光的垂直腔面发射器在光电子学中得到了广泛的利用,如超高密度、光存储.近场光学方案被认为是实现高密度光存储的次要手段.垂直腔面发射激光器还可用在全色平板显示、大面积发射、照明、光旌旗灯号、光装潢、紫外光刻、激光加工和医疗等方面.【5】

如前所述,半导体激光器自20世纪80年代初以来,因为取得了DFB动态单纵模激光器的研制成功和实用化,最子阱和应变层量子阱激光器的出现,大功率激光器及其列阵的进展,可见光激光器的研制成功,面发射激光器的实现、单极性注入半导体激光器的研制等等一系列的严重突破,半导体激光器的利用愈来愈广泛,半导体激光器已成为激光财产的次要构成部分,目前已成为各国发展信息、通信、家电财产及军事配备不成缺少的次要基础.

4大功率激光器的最新进展

在过去几年内,以条(以下简称bar)为基础的大功率半导体激光器(LD)在光输出功率和寿命两方面都取得了很大进展.仅仅在5年内,单个市售LD的典型CW输出功率从20W跃至50w,典型的预期寿命由1000小时提高到10000小时.目前的最高记录是:

在一个1cmbar上,一个980nm单片LD阵列的CW输出功率达267W.所以,实现大功率的关键是开发bar和比来的多条组件(multibarmodule)即叠式半导体激光器(stack).一个bar是由多个单独的半导体激光器构成的一个单片式线阵;

一个stack则是由几个bar构成的一个二维阵列.比来进展最明显的是后者.

Bar的现行行业尺度是器件宽度1cm,CW输出功率50w,寿命5000小时以上.功率最大的多条组件总功率超出30kW,这类器件的次要设计目标是在不影响bar本人固有的短命命的情况下尽量提高输出功率和亮度.器件失效和功能恶化的两个次要缘由是输出面因过热而烧毁和半导体材料中所谓的暗线缺陷的传播.无

论是哪种半导体激光器,寿命都受工作温度的严重影响,这是因为降低工作温度使暗线缺陷的传播变慢.虽然半导体激光器是将电转酿成激光的最无效的器件,但大功率不成防止地会发生大量的热.这请求bar须装有某种金属热沉,从而无效地用热电致冷器或凉水使器件致冷.在CW工作情况下,无效致冷不断是多条组件的次要设计考虑.迄今为止,致冷的方法是在bar之间用薄的铜热沉隔片,然后将此组件放在铜热沉上.因而冷却水就在bar的后面和四周流动,并通过主热沉.这类设计法构成”l.C/W”的拇指关系定律,即将一个bar的输出功率提高IW,使这个bar的温度绝对于热沉温度升高1℃.因为对冷却水的最低温度有一个实际的限制(在干燥环境下约15℃),所以对输出功率设置了一个极限.这对初期的半导体激光器来说,设计人员曾面临工作寿命和输出功率之问的调和成绩.

1998年,美国光功率公司的工程技术人员采取微沟道致冷技术,突破了这个热梯度壁垒.单个bar之间用厚约1mm的铜致冷板分隔,冷却水通过该板流动,这些空心板内的空问通过薄的致冷叶片分隔成很多流动沟道,分隔距离为几百微

米.使与冷却水接触的金属的概况积达到最大.用这类方法,bar能以1.8mm的bar间间隔紧密堆叠,bar间温差仅为0.3℃例.这类结构设计能使1cmbar构成的stack以每bar50WCW工作,寿命仍为5,000~10,000小时.例如,一个2×

10

阵列能在仅4cm2的总发光面上发生1kW的功率.准CW器件的市场也在增加,这类半导体激光器特别适用于军事利用,如目标测距和模拟器照明.这类利用通常请求低的占空因数(最多百分之几),以大幅度降低致冷请求和简化产品结构及

降低成本.在这类利用中,有多达16个bar堆叠在单个水冷热沉上,在单个bar之间不添加其他致冷元件.这类方法能使bar以每bar100W的峰值功率工作,占空因数达2%,脉冲持续时间lms或lms以下.这类16个bar的stack的峰值输出功率为1.6kW,典型工作寿命为10亿个以上脉冲.大功率半导体激光器的次要利用是用作Nd:

YAG、Nd:

YLF和Nd:

YV04固体激光器的808nm泵浦源,取代大部分输出功率在100W以下的钕激光器的灯泵浦.比来的功能进展导致好几种其他波长的大功率半导体激光器的利用急剧扩展,在印刷图示行业,830nm器件此刻广泛用于黑色胶印和数字直接到版打印.915rim半导体激光器用作光纤激光器的泵浦源.与此类似,940nm激光器用来泵浦镱激光器.【6】

当然,用作掺铒光纤放大器泵浦源的980nm器件的市场也在继续敏捷发展.此外,1.7岬半导体激光器用于一些新的医疗和军事领域,包含目标照明和测距.波长较短的激光器也正在用于材料处理,如焊接、塑料焊、涂料剥离和打标等.

5结论

本文首先介绍了半导体材料发生激光所需满足的条件和工作特性,接着由半导体激光器的发展历程来进一步深入论述,由同质结和异质结激光器的工作道理,其中次要列举了双异质结激光器的工作过程,从而对半导体激光器所发生激光为什么具有独特的上风提供了理论根据.

由此及彼,半导体激光器在生活的方方面面都发挥了巨大感化,改善了我们的生活,特别以大功率半导体激光器为例,它所具有的独特魅力,也将使其在国际国内具有更为广阔的开发和利用前景.

因为常识水平的限制,对于半导体激光器的前景的发展还没法提出精确的理论根据,更多是从全体发展的思路来掌控,今后要加强理论常识和实践水平的提升,从而为半导体激光器的使用和开发提供给为广阔的空间.

参考文献

(1)曾三松,高功率半年体激光嚣评述[J]激光技术,2000(8)

(2)何兴仁,半导体激光嚣的发展近况与趋势[J]光电子技术与信息,1999(8)

(3)陈辉高红,半导体激光器的发展及其在激光光谱学中的利用,哈尔滨师范大学天然科学学报,2005(11)

(4)任鲁涌,光纤通信,山东理工大学

(5)程末明,21世纪的半导体激光器【J】光机电信息,2002

(1)

(6)王利民,进入新世纪的半导体光电子技术,世界电子元器件,2001(12)

(7)马养武陈玉清,激光器件,浙江大学出版社

(8)李相银,激光道理技术及利用,哈尔滨工业大学

(9)王启明,半导体激光器酌进展[J]物理,1996

(2)(3)

(10)程文芹半导体列阵激光器[J]物理1994(7)

(11)林世鸣半导体发射微腔激光嚣及其集成阵的利用[J]物理,1994(10)

(12)许文海朱炜赵学增,集成检波模块的高精度激光波长波动零碎.光电子·

激光,2004,15(8):

921~923

(13)满文庆,杨世琪,钟旭滨以原子谱线作参考的半导体激光器的频率锁定.激光技术,1998,22

(1):

8~10

(14)王瑞峰.蔡伯荣,洪永和等lnGaAsP和GaAIAs半导体激光器稳频放电接收池的研讨电子学报,1997,25(11):

69—7l

(15)孙晓明.强锝富.马军山.半导体激光器直接电控稳频方法.仪器仪表学报1997,18(8):

293—297

(16)赵同刚,郭永新,赵荣华光纤光栅外腔半导体激光器的理论和实验分析.光电子激光,2004,15(10):

1186—1196

(17)耿健新,曹根娣,罗颍等光纤光栅外腔半导体激光器的实验研讨中国激光,2000,A27(6):

488

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2