吉林化工学院《纳米材料》作业Word文档格式.docx

上传人:b****4 文档编号:6418910 上传时间:2023-05-06 格式:DOCX 页数:14 大小:28.02KB
下载 相关 举报
吉林化工学院《纳米材料》作业Word文档格式.docx_第1页
第1页 / 共14页
吉林化工学院《纳米材料》作业Word文档格式.docx_第2页
第2页 / 共14页
吉林化工学院《纳米材料》作业Word文档格式.docx_第3页
第3页 / 共14页
吉林化工学院《纳米材料》作业Word文档格式.docx_第4页
第4页 / 共14页
吉林化工学院《纳米材料》作业Word文档格式.docx_第5页
第5页 / 共14页
吉林化工学院《纳米材料》作业Word文档格式.docx_第6页
第6页 / 共14页
吉林化工学院《纳米材料》作业Word文档格式.docx_第7页
第7页 / 共14页
吉林化工学院《纳米材料》作业Word文档格式.docx_第8页
第8页 / 共14页
吉林化工学院《纳米材料》作业Word文档格式.docx_第9页
第9页 / 共14页
吉林化工学院《纳米材料》作业Word文档格式.docx_第10页
第10页 / 共14页
吉林化工学院《纳米材料》作业Word文档格式.docx_第11页
第11页 / 共14页
吉林化工学院《纳米材料》作业Word文档格式.docx_第12页
第12页 / 共14页
吉林化工学院《纳米材料》作业Word文档格式.docx_第13页
第13页 / 共14页
吉林化工学院《纳米材料》作业Word文档格式.docx_第14页
第14页 / 共14页
亲,该文档总共14页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

吉林化工学院《纳米材料》作业Word文档格式.docx

《吉林化工学院《纳米材料》作业Word文档格式.docx》由会员分享,可在线阅读,更多相关《吉林化工学院《纳米材料》作业Word文档格式.docx(14页珍藏版)》请在冰点文库上搜索。

吉林化工学院《纳米材料》作业Word文档格式.docx

一般认为纳米材料应该包括两个基本条件:

一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。

纳米金属材料是20世纪80年代中期研制成功的,后来相继问世的有纳米半导体薄膜、纳米陶瓷、纳米瓷性材料和纳米生物医学材料等。

  纳米级结构材料简称为纳米材料(nanometermaterial),是指其结构单元的尺寸介于1纳米~100纳米范围之间。

由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。

并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。

  纳米颗粒材料又称为超微颗粒材料,由纳米粒子(nanoparticle)组成。

纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。

当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著的不同。

  纳米技术的广义范围可包括纳米材料技术及纳米加工技术、纳米测量技术、纳米应用技术等方面。

其中纳米材料技术着重于纳米功能性材料的生产(超微粉、镀膜、纳米改性材料等),性能检测技术(化学组成、微结构、表面形态、物、化、电、磁、热及光学等性能)。

纳米加工技术包含精密加工技术(能量束加工等)及扫描探针技术。

  纳米材料具有一定的独特性,当物质尺度小到一定程度时,则必须改用量子力学取代传统力学的观点来描述它的行为,当粉末粒子尺寸由10微米降至10纳米时,其粒径虽改变为1000倍,但换算成体积时则将有10的9次方倍之巨,所以二者行为上将产生明显的差异。

  纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表面能的不安定原子。

这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。

纳米技术在世界各国尚处于萌芽阶段,美、日、德等少数国家,虽然已经初具基础,但是尚在研究之中,新理论和技术的出现仍然方兴未艾。

我国已努力赶上先进国家水平,研究队伍也在日渐壮大。

二、纳米结构

纳米结构是以纳米尺度的物质单元为基础按一定规律构筑或营造的一种新体系。

它包括纳米阵列体系、介孔组装体系、薄膜嵌镶体系。

目前对纳米阵列体系的研究集中在由金属纳米微粒或半导体纳米微粒在一个绝缘的衬底上整齐排列所形成的二位体系上。

而纳米微粒与介孔固体组装体系由于微粒本身的特性,以及与界面的基体耦合所产生的一些新的效应,也使其成为了研究热点,按照其中支撑体的种类可将它划分为无机介孔复合体和高分子介孔复合体两大类,按支撑体的状态又可将它划分为有序介孔复合体和无序介孔复合体。

在薄膜嵌镶体系中,对纳米颗粒膜的主要研究是基于体系的电学特性和磁学特性而展开的。

美国科学家利用自组装技术将几百只单壁纳米碳管组成晶体索“Ropes”,这种索具有金属特性,室温下电阻率小于0.0001Ω/m;

将纳米三碘化铅组装到尼龙-11上,在X射线照射下具有光电导性能,利用这种性能为发展数字射线照相奠定了基础。

三、纳米材料的发现

 组成材料的物质颗粒变小了,“小不点”会不会与“大个子”的性质很不相同呢?

这便是纳米材料的发现者德国物理学家格莱特(Grant)的科学思路。

  那是1980年的一天,格莱特到澳大利亚旅游,当他独自驾车横穿澳大利亚的大沙漠时,空旷、寂寞和孤独的环境反而使他的思维特别活跃和敏锐。

他长期从事晶体材料的研究,了解晶体的晶粒大小对材料的性能有很大的影响:

晶粒越小,强度就越高。

  格莱特上面的设想只是材料的一般规律,他的想法一步一步地深入:

如果组成材料的晶体的晶粒细到只有几个纳米大小,材料会是个什么样子呢?

或许会发生“翻天覆地”的变化吧!

格莱特带着这些想法回国后,立即开始试验。

经过将近4年的努力,终于在1984年制得了只有几个纳米大小的超细粉末,包括各种金属、无机化合物和有机化合物的超细粉末。

  格莱特在研究这些超细粉末时发现了一个十分有趣的现象。

众所周知,金属具有各种不同的颜色,如金子是金黄色的,银子是银白色的,铁是灰黑色的。

至于金属以外的材料如无机化合物和有机化合物,它们也可以带着不同的色彩:

瓷器上面的釉历来都是多彩的,由各种有机化合物组成的染料更是鲜艳无比。

可是,一旦所有这些材料都被制成超细粉末时,它们的颜色便一律都是黑色的:

瓷器上的釉、染料以及各种金属统统变成了一种颜色──黑色。

正像格莱特想像的那样,“小不点”与“大个子”相比,性能上发生了“翻天覆地”的变化。

  为什么无论什么材料,一旦制成纳米“小不点”,就都成了黑色的呢?

原来,当材料的颗粒尺寸变小到小于光波的波长(1×

10m左右)时,它对光的反射能力变得非常低,大约低到小于1%。

既然超细粉末对光的反射能力很小,我们见到的纳米材料便都是黑色的了。

“小不点”性质上的变化确实是令人难以置信的。

著名的美国阿贡国家实验室制备出了一种纳米金属,居然使金属从导电体变成了绝缘体;

用纳米大小的陶瓷粉末烧结成的陶瓷制品再也不会一摔就破了。

格莱特的发现已经和正在改变科学技术中的一些传统概念。

因此,纳米材料将是21世纪备受瞩目的一种高新技术产品。

四、技术指标

纳米氧化铝外观白色粉末。

纳米氧化铝晶相γ相。

纳米氧化铝平均粒度(nm)20±

5.

纳米氧化铝含量%大于99.9%。

熔点:

2010℃-2050℃

沸点:

2980℃

相对密度(水=1)】:

3.97-4.0

五、纳米材料分类

1、纳米粉末

又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。

可用于:

高密度磁记录材料;

吸波隐身材料;

磁流体材料;

防辐射材料;

单晶硅和精密光学器件抛光材料;

微芯片导热基片与布线材料;

微电子封装材料;

光电子材料;

先进的电池电极材料;

太阳能电池材料;

高效催化剂;

高效助燃剂;

敏感元件;

高韧性陶瓷材料(摔不裂的陶瓷,用于陶瓷发动机等);

人体修复材料;

抗癌制剂等。

2、纳米纤维

指直径为纳米尺度而长度较大的线状材料。

微导线、微光纤(未来量子计算机与光子计算机的重要元件)材料;

新型激光或发光二极管材料等。

静电纺丝法是目前制备无机物纳米纤维的一种简单易行的方法。

3、纳米膜

纳米膜分为颗粒膜与致密膜。

颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。

致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。

气体催化(如汽车尾气处理)材料;

过滤器材料;

光敏材料;

平面显示器材料;

超导材料等。

4、纳米块体

纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料。

主要用途为:

超高强度材料;

智能金属材料等。

六、应用范围

1、天然纳米材料

海龟在美国佛罗里达州的海边产卵,但出生后的幼小海龟为了寻找食物,却要游到英国附近的海域,才能得以生存和长大。

最后,长大的海龟还要再回到佛罗里达州的海边产卵。

如此来回约需5~6年,为什么海龟能够进行几万千米的长途跋涉呢?

它们依靠的是头部内的纳米磁性材料,为它们准确无误地导航。

生物学家在研究鸽子、海豚、蝴蝶、蜜蜂等生物为什么从来不会迷失方向时,也发现这些生物体内同样存在着纳米材料为它们导航。

2、纳米磁性材料

在实际中应用的纳米材料大多数都是人工制造的。

纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十倍。

超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。

3、纳米陶瓷材料

传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。

纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。

如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使纳米材料成为一种表面保持常规陶瓷材料的硬度和化学稳定性,而内部仍具有纳米材料的延展性的高性能陶瓷。

4、纳米传感器

纳米二氧化锆、氧化镍、二氧化钛等陶瓷对温度变化、红外线以及汽车尾气都十分敏感。

因此,可以用它们制作温度传感器、红外线检测仪和汽车尾气检测仪,检测灵敏度比普通的同类陶瓷传感器高得多。

5、纳米倾斜功能材料

在航天用的氢氧发动机中,燃烧室的内表面需要耐高温,其外表面要与冷却剂接触。

因此,内表面要用陶瓷制作,外表面则要用导热性良好的金属制作。

但块状陶瓷和金属很难结合在一起。

如果制作时在金属和陶瓷之间使其成分逐渐地连续变化,让金属和陶瓷“你中有我、我中有你”,最终便能结合在一起形成倾斜功能材料,它的意思是其中的成分变化像一个倾斜的梯子。

当用金属和陶瓷纳米颗粒按其含量逐渐变化的要求混合后烧结成形时,就能达到燃烧室内侧耐高温、外侧有良好导热性的要求。

6、纳米半导体材料

将硅、砷化镓等半导体材料制成纳米材料,具有许多优异性能。

例如,纳米半导体中的量子隧道效应使某些半导体材料的电子输运反常、导电率降低,电导热系数也随颗粒尺寸的减小而下降,甚至出现负值。

这些特性在大规模集成电路器件、光电器件等领域发挥重要的作用。

利用半导体纳米粒子可以制备出光电转化效率高的、即使在阴雨天也能正常工作的新型太阳能电池。

由于纳米半导体粒子受光照射时产生的电子和空穴具有较强的还原和氧化能力,因而它能氧化有毒的无机物,降解大多数有机物,最终生成无毒、无味的二氧化碳、水等,所以,可以借助半导体纳米粒子利用太阳能催化分解无机物和有机物。

7、纳米催化材料

纳米粒子是一种极好的催化剂,这是由于纳米粒子尺寸小、表面的体积分数较大、表面的化学键状态和电子态与颗粒内部不同、表面原子配位不全,导致表面的活性位置增加,使它具备了作为催化剂的基本条件。

镍或铜锌化合物的纳米粒子对某些有机物的氢化反应是极好的催化剂,可替代昂贵的铂或钯催化剂。

纳米铂黑催化剂可以使乙烯的氧化反应的温度从600℃降低到室温。

8、医疗上的应用

血液中红血球的大小为6000~9000nm,而纳米粒子只有几个纳米大小,实际上比红血球小得多,因此它可以在血液中自由活动。

如果把各种有治疗作用的纳米粒子注入到人体各个部位,便可以检查病变和进行治疗,其作用要比传统的打针、吃药的效果好。

9、纳米计算机

世界上第一台电子计算机诞生于1945年,它是由美国的大学和陆军部共同研制成功的,一共用了18000个电子管,总重量30t,占地面积约170m,可以算得上一个庞然大物了,可是,它在1s内只能完成5000次运算。

经过了半个世纪,由于集成电路技术、微电子学、信息存储技术、计算机语言和编程技术的发展,使计算机技术有了飞速的发展。

今天的计算机小巧玲珑,可以摆在一张电脑桌上,它的重量只有老祖宗的万分之一,但运算速度却远远超过了第一代电子计算机。

  如果采用纳米技术来构筑电子计算机的器件,那么这种未来的计算机将是一种“分子计算机”,其袖珍的程度又远非今天的计算机可比,而且在节约材料和能源上也将给社会带来十分可观的效益。

10、纳米碳管

1991年,日本电气公司的专家制备出了一种称为“纳米碳管”的材料,它是由许多六边形的环状碳原子组合而成的一种管状物,也可以是由同轴的几根管状物套在一起组成的。

这种单层和多层的管状物的两端常常都是封死的。

这种由碳原子组成的管状物的直径和管长的尺寸都是纳米量级的,因此被称为纳米碳管。

它的抗张强度比钢高出100倍,导电率比铜还要高。

在空气中将纳米碳管加热到700℃左右,使管子顶部封口处的碳原子因被氧化而破坏,成了开口的纳米碳管。

然后用电子束将低熔点金属(如铅)蒸发后凝聚在开口的纳米碳管上,由于虹吸作用,金属便进入纳米碳管中空的芯部。

由于纳米碳管的直径极小,因此管内形成的金属丝也特别细,被称为纳米丝,它产生的尺寸效应是具有超导性。

因此,纳米碳管加上纳米丝可能成为新型的超导体。

纳米技术在世界各国尚处于萌芽阶段,美、日、德等少数国家,虽然已经初具基础,但是尚在研究之中,新理论和技术的出现仍然方兴未艾。

七、纳米材料的用途

很广,主要用途有:

医药使用纳米技术能使药品生产过程越来越精细,并在纳米材料的尺度上直接利用原子、分子的排布制造具有特定功能的药品。

纳米材料粒子将使药物在人体内的传输更为方便,用数层纳米粒子包裹的智能药物进入人体后可主动搜索并攻击癌细胞或修补损伤组织。

使用纳米技术的新型诊断仪器只需检测少量血液,就能通过其中的蛋白质和DNA诊断出各种疾病。

家电用纳米材料制成的纳米材料多功能塑料,具有抗菌、除味、防腐、抗老化、抗紫外线等作用,可用为作电冰箱、空调外壳里的抗菌除味塑料。

电子计算机和电子工业可以从阅读硬盘上读卡机以及存储容量为目前芯片上千倍的纳米材料级存储器芯片都已投入生产。

计算机在普遍采用纳米材料后,可以缩小成为“掌上电脑”。

环境保护环境科学领域将出现功能独特的纳米膜。

这种膜能够探测到由化学和生物制剂造成的污染,并能够对这些制剂进行过滤,从而消除污染。

纺织工业在合成纤维树脂中添加纳米SiO2、纳米ZnO、纳米SiO2复配粉体材料,经抽丝、织布,可制成杀菌、防霉、除臭和抗紫外线辐射的内衣和服装,可用于制造抗菌内衣、用品,可制得满足国防工业要求的抗紫外线辐射的功能纤维。

机械工业采用纳米材料技术对机械关键零部件进行金属表面纳米粉涂层处理,可以提高机械设备的耐磨性、硬度和使用寿命。

1、纳米技术在防腐中的应用

由加拿大万达科技(无锡)有限公司与全国涂料工业信息中心联合举办的无毒高效防锈颜料及其在防腐蚀涂料中的应用研讨会近日在无锡召开。

中国工程院院士、装甲兵工程学院徐滨士教授,上海交通大学李国莱教授,中化建常州涂料化工研究院钱伯荣总工等业内知名人士分别在会上作了报告,与会者共同探讨了纳米技术在防锈颜料中及涂料中的应用、无毒高效防锈颜料在防腐蚀涂料中的应用以及新型防锈涂料和防锈试验方法发展等课题。

徐院士就当前纳米技术的发展情况作了简单介绍,他指出:

纳米技术的研究对人类的发展、世界的进步起着至关重要的作用,谁掌握了纳米技术,谁就站在了世界的前列。

我国纳米技术的研究因起步较早,现基本能与世界保持同步,在某些领域甚至超过世界同行业。

作为国内表面处理这一课题的领头人,徐院士重点谈了纳米技术对防锈颜料及涂料发展的促进作用。

他说,此前我国防锈颜料的开发整体水平落后于西方发达国家,仍然以红丹、铬酸盐、铁系颜料、磷酸锌等传统防锈颜料为主。

红丹因其污染严重,对人体的伤害很大,目前已被许多国家相继淘汰和禁止使用;

磷酸锌防锈颜料虽然无毒,但由于改性技术原因,性能并不理想,加上价格太贵,难以推广;

而三聚磷酸铝也因价格原因未能大量应用。

国外公司如美国的Halox、Sherwin-williams、Mineralpigments、德国的Hrubach、法国的SNCZ、英国的BritishPetroleum、日本的帝国化工公司均推出了一系列无毒防锈颜料,有的性能不错,甚至已可与铬酸盐相比,但均因价格太高,国内尚未引进。

我国防锈涂料业亟待一种无毒无害、性能优异而又价格低廉的防锈颜料来提升防锈涂料产品的整体水平,增强行业的国际竞争力。

中化建常州涂料化工研究院高级工程师沈海鹰代表常州涂料院,在题为《无毒高效防锈颜料在防腐蚀涂料中的应用》报告中,详细介绍了复合铁钛醇酸防锈漆及复合铁钛环氧防锈漆的生产工艺、生产或使用注意事项、防锈漆技术指标及其与铁红、红丹同类防锈漆主要性能的比较。

在红丹价格一路攀升的今天,这一信息无疑给各涂料生产厂商提供了巨大的参考价值,会场气氛十分热烈,与会者纷纷提出各种问题。

万达科技(无锡)有限公司总工程师李家权先生就复合铁钛防锈颜料的防锈机理、生产工艺、载体粉的选择、产品各项性能指标及纳米材料的预处理方法等一一做了详细介绍。

目前产品已通过国家涂料质量监督检测中心、铁道部产品质量监督检验中心车辆检验站、机械科学院武汉材料保护研究所等国内多家权威机构的分析和检测,同时还经过加拿大国家涂料信息中心等国外权威机构的技术分析,结果表明其具有目前国内外同类产品无可比拟的防锈性能和环保优势,是防锈涂料领域划时代产品,为此获得了中国专利技术博览会金奖.复合铁钛粉及其防锈漆通过国家权威机构的鉴定后已在多个工业领域得到应用,并已由解放军总装备部作为重点项目在全军部分装备上全面推广使用。

本次会议的成功召开,标志着我国防锈涂料产业新一轮的变革即将开始,它掀开了我国防锈涂料朝高品质、高技术含量、高效益及全环保型发展的崭新一页。

其带来的经济效益、社会效益不可估量。

这是新型防锈颜料向传统防锈颜料宣战的开始,也吹响了我国防锈涂料业向高端防锈涂料市场发起冲击的号角。

2、纳米材料在涂料中应用展前景预测

据估算,全球纳米技术的年产值已达到500亿美元。

目前,发达国家政府和大的企业纷纷启动了发展纳米技术和纳米计划的研究计划。

美国将纳米技术视为下一次工业革命的核心,2001年年初把纳米技术列为国家战略目标,在纳米科技基础研究方面的投资,从1997年的1亿多美元增加到2001年近5亿美元,准备像微电子技术那样在这一领域独占领先地位。

日本也设立了纳米材料中心,把纳米技术列入新五年科技基本计划的研究开发重点,将以纳米技术为代表的新材料技术与生命科学、信息通信、环境保护等并列为四大重点发展领域。

德国也把纳米材料列入21世纪科研的战略领域,全国有19家机构专门建立了纳米技术研究网。

在人类进入21世纪之际,纳米科学技术的发展,对社会的发展和生存环境改善及人体健康的保障都将做出更大的贡献。

从某种意义上说,21世纪将是一个纳米世纪。

由于表面纳米技术运用面广、产业化周期短、附加值高,所形成的高新技术和高技术产品、以及对传统产业和产品的改造升级,产业化市场前景极好。

在纳米功能和结构材料方面,将充分利用纳米材料的异常光学特性、电学特性、磁学特性、力学特性、敏感特性、催化与化学特性等开发高技术新产品,以及对传统材料改性;

将重点突破各类纳米功能和结构材料的产业化关键技术、检测技术和表征技术。

多功能的纳米复合材料、高性能的纳米硬质合金等为化工、建材、轻工、冶金等行业的跨越式发展提供了广泛的机遇。

预期十五期间,各类纳米材料的产业化可能形成一批大型企业或企业集团,将对国民经济产生重要影响;

纳米技术的应用逐渐渗透到涉及国计民生的各个领域,将产生新的经济增长点。

纳米技术在涂料行业的应用和发展,促使涂料更新换代,为涂料成为真正的绿色环保产品开创了突破性的新纪元。

我国每年房屋竣工面积约为18亿平方米,年增长速度大约为3%。

18亿平方米的建筑若全部采用建筑涂料装饰则总共需建筑涂料近300万吨,约200~300亿元的市场。

目前,我国建筑涂料年产量仅60多万吨,世界现在涂料年总产量为2500万吨,每人每年消耗4千克,为发达国家的1/10,中国人年均涂料消费只有1.5千克。

因而,建筑涂料具有十分广阔的发展前景。

纳米涂料已被认定为北京奥运村建筑工程的专用产品,展示出该涂料在建筑领域里的应用价值。

它利用独特的光催化技术对空气中有毒气体有强烈的分解,消除作用。

对甲醛、氨气等有害气体有吸收和消除的功能,使室内空气更加清新。

经测试,对各种霉菌的杀抑率达99%以上,有长期的防霉防藻效果。

纳米改性内墙涂料,实际上是高级的卫生型涂料,适合于家庭、医院、宾馆和学校的涂装。

纳米改性外墙涂料,利用纳米材料二元协同的荷叶双疏机理,较低的表面张力,具有高强的附着力,漆膜硬度高且有韧性,优良的自洁功能,强劲的抗粉尘和抗脏物的粘附能力,疏水性极佳,容易清洗污物的性能。

耐洗性大于15000次,具有良好的保光保色性能,抗紫外线能力极强。

使用寿命达15年以上。

颗粒径细小,能深入墙体,与墙面的硅酸盐类物质配位反应,使其牢牢结合成一体,附着力强,不起皮,不剥落,抗老化。

其纳米抗冻性功能涂料,除具备纳米型涂料各种优良性之外,可在-10℃到-25℃之内正常施工。

突破了建筑涂料要求墙体湿度在10%以下的规定,使建筑行业施工缩短了工期,提高了功效,又创造出高质量,一举三得,所以备受建筑施工单位的欢迎。

由于目前应用纳米材料对涂料进行改性尚处在初级阶段,技术、工艺还不太成熟,需要探索和改进。

但涂料的各种性能得到某些改进的试验结果足以证明,纳米改性涂料的市场前景是非常好的。

八、制备方法

1、惰性气体下蒸发凝聚法。

通常由具有清洁表面的、粒度为1-100nm的微粒经高压成形而成,纳米陶瓷还需要烧结。

国外用上述惰性气体蒸发和真空原位加压方法已研制成功多种纳米固体材料,包括金属和合金,陶瓷、离子晶体、非晶态和半导体等纳米固体材料。

我国也成功的利用此方法制成金属、半导体、陶瓷等纳米材料。

2、化学方法:

1水热法,包括水热沉淀、合成、分解和结晶法,适宜制备纳米氧化物;

2水解法,包括溶胶-凝胶法、溶剂挥发分解法、乳胶法和蒸发分离法等。

3、综合方法。

结合物理气相法和化学沉积法所形成的制备方法。

其他一般还有球磨粉加工、喷射加工等方法。

九、国内的研究情况及取得的成果

纳米技术作为一种最具有市场应用潜力的新兴科学技术,其潜在的重要性毋庸置疑,一些发达国家都投入大量的资金进行研究工作。

如美国最早成立了纳米研究中心,日本文教科部把纳米技术,列为材料科学的四大重点研究开发项目之一。

在德国,以汉堡大学和美因茨大学为纳米技术研究中心,政府每年出资6500万美元支持微系统的研究。

在国内,许多科研院所、高等院校也组织科研力量,开展纳米技术的研究工作,并取得了一定的研究成果,主要如下:

定向纳米碳管阵列的合成,由中国科学院物理研究所解思深研究员等完成。

他们利用化学气相法高效制备出孔径约20纳米,长度约100微米的碳纳米管。

并由此制备出纳米管阵列,其面积达3毫米×

3毫米,碳纳米管之间间距为100微米。

氮化镓纳米棒的制备,由清华大学范守善教授等完成。

他们首次利用碳纳米管制备出直径3~40纳米、长度达微米量级的

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2