直流电机闭环调速Word格式.docx

上传人:b****4 文档编号:6502218 上传时间:2023-05-06 格式:DOCX 页数:36 大小:803.10KB
下载 相关 举报
直流电机闭环调速Word格式.docx_第1页
第1页 / 共36页
直流电机闭环调速Word格式.docx_第2页
第2页 / 共36页
直流电机闭环调速Word格式.docx_第3页
第3页 / 共36页
直流电机闭环调速Word格式.docx_第4页
第4页 / 共36页
直流电机闭环调速Word格式.docx_第5页
第5页 / 共36页
直流电机闭环调速Word格式.docx_第6页
第6页 / 共36页
直流电机闭环调速Word格式.docx_第7页
第7页 / 共36页
直流电机闭环调速Word格式.docx_第8页
第8页 / 共36页
直流电机闭环调速Word格式.docx_第9页
第9页 / 共36页
直流电机闭环调速Word格式.docx_第10页
第10页 / 共36页
直流电机闭环调速Word格式.docx_第11页
第11页 / 共36页
直流电机闭环调速Word格式.docx_第12页
第12页 / 共36页
直流电机闭环调速Word格式.docx_第13页
第13页 / 共36页
直流电机闭环调速Word格式.docx_第14页
第14页 / 共36页
直流电机闭环调速Word格式.docx_第15页
第15页 / 共36页
直流电机闭环调速Word格式.docx_第16页
第16页 / 共36页
直流电机闭环调速Word格式.docx_第17页
第17页 / 共36页
直流电机闭环调速Word格式.docx_第18页
第18页 / 共36页
直流电机闭环调速Word格式.docx_第19页
第19页 / 共36页
直流电机闭环调速Word格式.docx_第20页
第20页 / 共36页
亲,该文档总共36页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

直流电机闭环调速Word格式.docx

《直流电机闭环调速Word格式.docx》由会员分享,可在线阅读,更多相关《直流电机闭环调速Word格式.docx(36页珍藏版)》请在冰点文库上搜索。

直流电机闭环调速Word格式.docx

微型计算机的发展,尤其是微控制器的发展为直流调速系统的进一步发展插上了翅膀。

微控制器在这里的应用,改变了控制系统的结构,改变了传感元件的检测技术,并且使各种先进控制算法得以实现。

任何设计都不是终极设计,都在随着其他科技的发展而不断完善。

1.3设计任务内容

根据课题要求研制以单片机为核心的直流电机测速控制系统。

系统设计主要包含以下任务:

1、实现对直流电机转速的测量;

2、通过按键调节电机转速值,在电机转速的可控范围内控制电机转速;

3、实时显示直流电机转速实际测量值;

4、利用控制电机定子电压接通和断开的占空比(PWM),即脉宽调速;

本设计采用红外对射传感器将转速转换成频率与速度一一对应的脉冲信号,将脉冲信号送给单片机进行检测,最终计算出电机的转速。

采用四位一体八段数码管显示器,显示测量值。

对于直流电机的转速控制,选择合适的PWM方式驱动实现。

设计的总体模块化方案如图1-1所示,整个设计采用模块化设计、分布调试、整体组合的方法。

AT89S52单片机(测速、调速、显示、计算、按键输入及系统控制)

显示器

按键

测速电路

直流电机

直流电机驱动电路

PWM

图1-1系统设计总体模块化方案

 

第2章系统组成模块原理概述

2.1直流电机概述

2.1.1直流电机结构

直流电机的结构应由定子和转子两大部分组成。

直流电机运行时静止不动的部分称为定子,定子的主要作用是产生磁场,由机座、主磁极、换向极、端盖、轴承和电刷装置等组成。

运行时转动的部分称为转子,其主要作用是产生电磁转矩和感应电动势,是直流电机进行能量转换的枢纽,所以通常又称为电枢,由转轴、电枢铁心、电枢绕组、换向器和风扇等组成。

直流电机的结构如图2-1所示。

图2-1直流电机结构图

2.1.2直流电机工作原理

直流电机模型如图2-2所示,磁极N,S间装着一个可以转动的铁磁圆柱体,圆柱体的表面固定着线圈abcd。

当线圈流过电流的时候,线圈受到电磁力的作用,产生旋转。

根据左手定则可知,当流过线圈中电流改变方向时,线圈的受力方向也将改变,因此通过改变线圈电流的方向实现改变电机的方向。

图2-2直流电机工作原理模型

2.1.3直流电机主要技术参数

额定功率Pn:

在额定电流和电压下,电机的负载能力。

额定电压Ue:

长期运行的最高电压。

额定电流Ie:

长期运行的最大电流。

额定转速n:

单位时间里面电机转速的快慢。

励磁电流If:

施加到电极线圈上的电流。

2.1.4直流电机的调速的技术指标

1.调速范围

调速范围是指最低可控转速到最高可控转速的范围,最低可控转速对最高可控转速的比值,叫电机的调速比。

2.调速的相对稳定性和静差度

所谓相对稳定性,是指负载转矩在给定的范围里面变化所引起的速度的变化,它决定于机械特性的斜率。

静差度(又称静差率)是指当电动机在一条机械特性上运行时,由理想空载到满载时的转速降落与理想空载转速n0的比值。

用百分数表示,即

(2-1)

在一般的情况下,取额定转矩下的速度落差

,有

(2-2)

3.调速的平滑性

调速的平滑性是在一定的调速范围内,相邻两极速度变化的程度,用平滑系数Φ表示,即

(2-3)

式中

相邻两极,即i级与i-1级的速度

4.调速时的容许输出

调速时的容许输出是指电动机在得到充分利用的情况下,在调速的过程中轴能够输出的功率和转矩。

2.2单片机概述

2.2.1单片机的简介

单片机是一种集成在电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。

2.2.2单片机的发展史

1.四位单片机

1975年,美国德克萨斯公司首次推出4位单片机TMS-1000,此后各个计算机公司竞相推出4位单片机。

日本松下公司的MN1400系列。

美国洛克威尔公司的PPS/1系列等。

4位单片机的主要的应用的领域有:

PC机的输入装置、电池的充电器、运动器材、带液晶显示器的音/视频产品控制器、一般家用电器的控制及遥控器、电子玩具、钟表、计算器、多功能电话等。

2.八位单片机

1972年,美国Intel公司首先推出8位微处理器8008,并与1976年9月率先推出MCS-48系列单片机。

在这以后,8位单片机纷纷面世。

例如莫斯特克和仙童公司合作生产的3870系列,摩托罗拉公司生产的6801系列等。

随着集成电路工艺水平的提高,一些高性能的8位单片机相继问世,例如1978年摩托罗拉公司的MC6801。

这类单片机的寻址能力达到64KB,片内ROM的容量达4-8KB,片内除带有并行I/O口,甚至还有A/D转换器的功能。

8位单片机由于性能强大,被广泛用于自动化装置,智能接口,过程控制等各领域。

3.十六位单片机

1983年以后,集成电路的集成度可达几十万只管/片,各系列16位单片机纷纷面世,这一阶段的代表产品有1983年Intel公司推出的MCS-96系列,1987年Intel公司推出了80C96,美国半导体公司推出了HPC16040。

16位单片机主要用于工业控制,智能仪器仪表等场合。

4.三十二位单片机

随着高新技术智能机器人,激光打印机,图像与数据实时处理,复杂实时控制,网络服务器等领域的应用和发展,20世纪80年代末,推出了32位单片机,如摩托罗拉公司的MC683XX系列。

32位单片机是单片机的发展趋势,随着技术的发展和开发成本的降低,将会和8位单片机并驾齐驱。

5.六十四位单片机

近年来,64位单片机在引擎控制,智能机器人,磁盘控制,算法密集的实时控制场所已有应用。

如英国的Inmos公司的TransputerT800是高性能的64位单片机。

2.2.3单片机的特点

1.高集成度,体积小,高可靠性

单片机将各功能部件集成在一块晶体芯片上,集成度很高,体积自然也是最小的。

芯片本身是按工业测控环境要求设计的,内部布线很短,其抗工业噪音性能优于一般通用的CPU。

单片机程序指令,常数及表格等固化在ROM中不易破坏,许多信号通道均在一个芯片内,故可靠性高。

2.控制功能强

为了满足对对象的控制要求,单片机的指令系统均有极丰富的条件,即分支转移能力,I/O口的逻辑操作及位处理能力,非常适用于专门的控制功能。

3.低电压,低功耗,便于生产便携式产品

为了满足广泛使用于便携式系统,许多单片机内的工作电压仅为1.8V~3.6V,而工作电流仅为数百微安。

4.易扩展

片内具有计算机正常运行所必需的部件。

芯片外部有许多供扩展用的三总线及并行、串行输入/输出管脚,很容易构成各种规模的计算机应用系统。

5.优异的性能价格比

单片机的性能极高。

为了提高速度和运行效率,单片机已开始使用RISC流水线和DSP等技术。

单片机的寻址能力也已突破64KB的限制,有的已可达到1MB和16MB,片内的ROM容量可达62MB,RAM容量则可达2MB。

由于单片机的广泛使用,因而销量极大,各大公司的商业竞争更使其价格十分低廉,其性能价格比极高。

2.2.4AT89S52单片机介绍

AT89S52单片机是一款低功耗、低电压、高性能CMOS8位单片机,片内含8KB(可经受1000次擦写周期)的FLASH可编程可反复擦写的只读程序存储器(EPROM),器件采用CMOS工艺和ATMEL公司的高密度,非易失性存储器(NURAM)技术制造,其输出引脚和指令系统都与MCS-51兼容,片内的FLASH存储器允许在系统内可改编程序或用常规的非易失性存储编程器来编程。

因此,AT89S52是一种功能强,灵活性高且价格合理的单片机,可方便的应用在各个控制领域。

AT89S52单片机引脚结构如图2-3所示。

AT89S52具有以下主要性能:

1.8KB可改编程序FLASH存储器;

2.全表态工作:

0~24HZ;

3.256X8字节内部RAM;

4.32个外部双向输入,输出(I、O)口;

图2-3AT89S52引脚说明

部分引脚功能说明如下:

VCC:

电源电压。

GND:

地。

P0口:

P0口是一组8位漏极开路型双向I/O口,也即地址/数据线复用口。

作为输出口时,每位能吸收电流的方式驱动8个TTL逻辑门电路,对端口写“1”可作为高阻抗输入端。

在访问外部数据储存器或程序储存器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。

FLASH编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。

P1口:

P1是一个带内部上拉电阻的8位双向I/O口,P1的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。

对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作为输入口。

作为输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流。

FLASH编程和程序校验期间,P1接收低8位地址。

P2口:

P2是一个带内部上拉电阻的8位双向I/O口,P2的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。

在访问外部程序储存器或16位地址的外部数据储存器(例如执行MOVX@DPTR指令)时,P2口送出高8位地址数据。

在访问8位地址的外部数据储存器(例如执行MOVX@RI指令)时,P2口线上的内容(也即特殊功能寄存器(SFR)区中R2寄存器的内容),在整个访问期间不改变。

FLASH编程或校验时,P2亦接收高位地址和其他控制信号。

P3口:

P3是一个带内部上拉电阻的8位双向I/O口,P3的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。

P3除了作为一般的I/O口线外,更重要的用途是它的第二功能,具体功能说明如表2-1。

P3口还接收一些用于FLASH闪速存储器编程和程序校的控制信号。

RST:

复位输入。

当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位。

ALE/PROG:

当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字节。

即使不访问外部存储器,ALE仍以是时钟振荡频率的1/6输出固定的正脉冲信号,因此他可对外输出时钟或用于定时目的。

要注意的是:

每当访问外部数据存储器时将跳过一个ALE脉冲。

对FLASH存储器编程期间,该引脚还用于输入编程脉冲(PROG)。

如有必要,可通过对特殊功能寄存器(SFR)区中的8EH单元的D0位置位,可禁止ALE操作。

该位置位后,只有一条MOVX和MOVC指令ALE才会被激活。

此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE无效。

PSEN:

程序储存允许(PSEN)输出是外部程序存储器的读选通信号,当AT80C51由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN有效,即输出两个脉冲。

在此期间,当访问外部数据存储器,这两次有效的PSEN信号不出现。

EA/VPP:

外部访问允许。

欲使CPU仅访问外部程序储存器(地址为0000H-FFFFH),EA端必须保持低电平(接地)。

需要注意的是:

如果加密位LB1被编程,复位时内部会锁存EA端状态。

如EA端为高电平(Vcc端),CPU则执行内部程序储存器中的指令。

FLASH储存器编程时,该引脚加上+12V的编程允许电源Vpp,当然这必须是该器件是使用12v编程电压。

XTAL1:

振荡器反相放大器的及内部时钟发生器的输入端。

XTAL2:

振荡器反相放大器的输出端

表2-1P3端口第二功能表

端口引脚

第二功能

P3.0

RXD(串行输出口)

P3.1

TXD(串行输入口)

P3.2

INT0(外部中断0)

P3.3

INT1(外部中断1)

P3.4

T0(定时/计数器0)

P3.5

T1(定时/计数器0)

P3.6

WR(外部数据写选通)

P3.7

RD(外部数据读选通)

2.3调速方案的选择及PWM概述

2.3.1方案的选择

直流电动机的转速控制方法可以分为两大类:

对励磁磁通进行控制的励磁控制法和对电枢电压进行控制的电枢电压法。

其中励磁控制法在低速时受磁饱和的限制,在高速时受换向火花和换向器件结构强度的限制。

并且励磁线圈电感较大,动态性能响应较差,所以这种控制方法用的很少,多使用电枢控制法。

本设计将采用电枢控制方法对电动机的速度进行控制。

某些场合往往要求直流电机的转速在一定范围内可调节,例如,电车、机床等,调节范围根据负载的要求而定。

调速可以有三种方法:

(1)改变电机两端电压;

(2)改变磁通;

(3)在电枢回路中,串联调节电阻。

本设计采用第一种方法:

通过改变施加于电机两端的电压大小达到调节直流电机转速的目的。

方案一:

PWM波调速

采用由达林顿管组成的H型PWM电路(图2-4)。

用单片机控制达林顿管使之工作在占空比可调的开关状态,精确调整电动机转速。

这种电路由于工作在管子的饱和截止模式下,效率非常高;

H型电路保证了可以简单地实现转速和方向的控制;

电子开关的速度很快,稳定性也极佳,是一种广泛采用的PWM调速技术。

我采用了脉宽调频方式,因为采用这种方式,电动机在运转时比较稳定;

并且在采用单片机产生PWM脉冲的软件实现上比较方便。

且对于直流电机,采用软件延时所产生的定时误差在允许范围。

图2-4PWM波调速电路

方案二:

晶闸管调速

采用闸流管或汞弧整流器的离子拖动系统是最早应用静止式变流装置供电的直流电动机调速系统。

1957年,晶闸管(俗称“可控硅”)问世,到了60年代,已生产出成套的晶闸管整流装置,并应用于直流电动机调速系统,即晶闸管可控整流器供电的直流调速系统(V-M系统)。

如图2-5,VT是晶闸管可控整流器,通过调节触发装置GT的控制电压U来移动触发脉冲的相位;

即可改变整流电压,从而实现平滑调速。

晶闸管整流装置不仅在经济性和可靠性上都有很大提高,而且在技术性能上也显示出较大的优越性;

晶闸管可控整流器的功率放大倍数在十的四次方以上,其门极电流可以直接用晶体管来控制,不再像直流发电机那样需要较大功率的放大器。

因此,在60年代到70年代,晶闸管可控整流器供电的直流调速系统(V-M系统)代替旋转变流机组直流电动机调速系统(G-M系统),得到了广泛的应用。

但是由于晶闸管的单向导电性,它不允许电流反向,给系统的可逆运行造成困难;

晶闸管对过电压、过电流和过高的du/dt与di/dt都十分敏感,若超过允许值会在很短的时间内损坏器件。

另外,由谐波与无功功率引起电网电压波形畸变,殃及附近的用电设备,造成“电力公害”,因此必须添置无功补偿和谐波滤波装置。

图2-5晶闸管可控整流器供电的直流调速系统(V-M系统)

构成直流斩波器的开关器件过去用得较多的是普通晶闸管和逆导晶闸管,它们本身没有自关断的能力,必须有附加的关断电路,增加了装置的体积和复杂性,增加了损耗,而且由它们组成的斩波器开关频率低,输出电流脉动较大,调速范围有限。

自20世纪70年代以来,电力电子器件迅速发展,研制并生产了多种既能控制其导通又能控制其关断的全控型器件,如门极可关断晶闸管(GTO)、电力电子晶体管(GTR)、电力场效应管(P-MOSFET)、绝缘栅双极型晶体管(IGBT)等,这些全控型器件性能优良,由它们构成的脉宽调制直流调速系统(简称PWM调速系统)近年来在中小功率直流传动中得到了迅猛的发展,与V-M调速相比,PWM调速系统有以下优点:

采用全控型器件的PWM调速系统,其脉宽调制电路的开关频率高,一般在几kHz,因此系统的频带宽,响应速度快,动态抗扰能力强。

(1)由于开关频率高,仅靠电动机电枢电感的滤波作用就可以获得脉动很小的直流电流,电枢电流容易连续,系统的低速性能好,稳速精度高,调速范围宽,同时电动机的损耗和发热都较小。

(2)PWM系统中,主回路的电力电子器件工作在开关状态,损耗小,装置效率高,而且对交流电网的影响小,没有晶闸管整流器对电网的“污染”,功率因数高,效率高。

(3)主电路所需的功率元件少,线路简单,控制方便。

目前,受到器件容量的限制,PWM直流调速系统只用于中、小功率的系统,兼于方案一调速特性优良;

调整平滑;

调速范围广;

过载能力大,因此本设计采用方案一。

2.3.2直流电机PWM调速概述

PWM(PulseWidthModulation)即脉冲宽度调制是通过控制固定电压的直流电源开关频率,从而改变负载两端的电压,进而达到控制要求的一种电压调制方法。

在PWM驱动控制的调制系统中,按一个固定的频率来接通和断开电源,并根据需要改变一个周期内“接通”和“断开”时间的长短。

通过改变直流电机电枢上电压的“占空比”来改变平均电压的大小,从而控制电动机的转速。

如图2-6所示,在脉冲作用下,当电机通电时,速度增加;

电机断电时,速度逐渐减少。

只要按一定规律,改变通、断电的时间,即可让电机转速得到控制。

设电机始终接通电源时,电机转速最大为Vmax,设占空比为D=t1/T,则电机的平均速度为Vd=Vmax*D,其中,Vd为电机的平均速度;

Vmax为电机全通电时的速度(最大);

D=t1/T为占空比。

由公式可见,当我们改变占空比D时,就可以得到不同的电机平均速度,从而达到调速的目的。

图2-6脉冲信号作用下电机转速变换规律

2.4软件系统简介

本设计使用的软件是Keil编程软件。

Keil软件是目前最流行的开发MCS-51系列单片机的软件,Keil提供了包括C51编译器、宏汇编、连接器、库管理和一个功能强大的仿真调试器等在内的完整开发方案,通过一个集成开发环境(μVision)将这些部分组合在一起。

使用KeilSoftware工具时的项目开发流程和其他软件开发项目的流程极其相似:

①创建一个项目,从器件库中选择目标器件,配置工具设置。

②用C语言或汇编语言创建源程序。

③用项目管理器生成应用。

④修改源程序中的错误。

⑤测试连接应用。

一个完整的8051工具集的框图可以最好地表述上述开发流程,如图2-7所示。

本设计采用C语言进行编程。

虽然汇编语言在控制底层硬件方面有着良好的性能且执行效率高,但是编程效率低,可移植性和可读性差,维护极其不便,从而导致整个系统的可靠性也较差。

C语言与汇编语言相较而言有以下优势:

①可以大幅加快开发进度,特别是开发一些复杂的系统,程序量越大,用C语言就越有优势。

②可以实现软件的结构化编程,C语言使得软件的逻辑结构变得清晰、有条理。

③省去了人工分配单片机资源(包括寄存器、RAM等)的工作。

在汇编语言中要每一个子程序分配单片机的资源,而在C语言中,只要在代码中声明一下变量的类型,编译器就会自动分配相关资源,从而有效地避免了人工分配单片机资源可能带来的差错。

④当写好一个算法后,需要移植到不同的MCU上时,在汇编语言中只有重新编写代码,因而汇编语言的可移植性很差;

而用C语言开发时,符合ANSIC标准的程序基本不必修改,只要将一些与硬件相关的代码做适度的修改,就可以移植到其他种类的单片机上。

⑤C语言提供data、idata、pdata、xdata、和code等存储器类型,针对单片机的内部数据存储空间、外部数据存储空间和程序空间自动为变量合理地分配空间,而且C语言提供复杂的数据类型,如指针、数组、结构体等,极大地增强了程序的处理能力和灵活性。

C语言较汇编语言的不足之处就是使用C语言写出来的代码会比用汇编语言占用的空间大5%~20%,所以执行起来效率就不及汇编语言。

μVision2集成开发环境

C51

ANSIC编译器

A51

宏编译器

ANSIC标准库

LIB51库管理器

RTX51实时操作系统

BL51连接器/定位器

μVision2调试器

高速CPU/

外设模拟器

Monitor-51

目标调试器

仿真器与PROM编程器

高级仿真与目标调试GDI接口

图2-7KeilVision2软件开发流程

第3章硬件电路分

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2