毕业论文:纳米空心二氧化硅的合成及在蛋壳形催化剂制备的应用Word文件下载.doc

上传人:wj 文档编号:6856921 上传时间:2023-05-07 格式:DOC 页数:36 大小:2.84MB
下载 相关 举报
毕业论文:纳米空心二氧化硅的合成及在蛋壳形催化剂制备的应用Word文件下载.doc_第1页
第1页 / 共36页
毕业论文:纳米空心二氧化硅的合成及在蛋壳形催化剂制备的应用Word文件下载.doc_第2页
第2页 / 共36页
毕业论文:纳米空心二氧化硅的合成及在蛋壳形催化剂制备的应用Word文件下载.doc_第3页
第3页 / 共36页
毕业论文:纳米空心二氧化硅的合成及在蛋壳形催化剂制备的应用Word文件下载.doc_第4页
第4页 / 共36页
毕业论文:纳米空心二氧化硅的合成及在蛋壳形催化剂制备的应用Word文件下载.doc_第5页
第5页 / 共36页
毕业论文:纳米空心二氧化硅的合成及在蛋壳形催化剂制备的应用Word文件下载.doc_第6页
第6页 / 共36页
毕业论文:纳米空心二氧化硅的合成及在蛋壳形催化剂制备的应用Word文件下载.doc_第7页
第7页 / 共36页
毕业论文:纳米空心二氧化硅的合成及在蛋壳形催化剂制备的应用Word文件下载.doc_第8页
第8页 / 共36页
毕业论文:纳米空心二氧化硅的合成及在蛋壳形催化剂制备的应用Word文件下载.doc_第9页
第9页 / 共36页
毕业论文:纳米空心二氧化硅的合成及在蛋壳形催化剂制备的应用Word文件下载.doc_第10页
第10页 / 共36页
毕业论文:纳米空心二氧化硅的合成及在蛋壳形催化剂制备的应用Word文件下载.doc_第11页
第11页 / 共36页
毕业论文:纳米空心二氧化硅的合成及在蛋壳形催化剂制备的应用Word文件下载.doc_第12页
第12页 / 共36页
毕业论文:纳米空心二氧化硅的合成及在蛋壳形催化剂制备的应用Word文件下载.doc_第13页
第13页 / 共36页
毕业论文:纳米空心二氧化硅的合成及在蛋壳形催化剂制备的应用Word文件下载.doc_第14页
第14页 / 共36页
毕业论文:纳米空心二氧化硅的合成及在蛋壳形催化剂制备的应用Word文件下载.doc_第15页
第15页 / 共36页
毕业论文:纳米空心二氧化硅的合成及在蛋壳形催化剂制备的应用Word文件下载.doc_第16页
第16页 / 共36页
毕业论文:纳米空心二氧化硅的合成及在蛋壳形催化剂制备的应用Word文件下载.doc_第17页
第17页 / 共36页
毕业论文:纳米空心二氧化硅的合成及在蛋壳形催化剂制备的应用Word文件下载.doc_第18页
第18页 / 共36页
毕业论文:纳米空心二氧化硅的合成及在蛋壳形催化剂制备的应用Word文件下载.doc_第19页
第19页 / 共36页
毕业论文:纳米空心二氧化硅的合成及在蛋壳形催化剂制备的应用Word文件下载.doc_第20页
第20页 / 共36页
亲,该文档总共36页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

毕业论文:纳米空心二氧化硅的合成及在蛋壳形催化剂制备的应用Word文件下载.doc

《毕业论文:纳米空心二氧化硅的合成及在蛋壳形催化剂制备的应用Word文件下载.doc》由会员分享,可在线阅读,更多相关《毕业论文:纳米空心二氧化硅的合成及在蛋壳形催化剂制备的应用Word文件下载.doc(36页珍藏版)》请在冰点文库上搜索。

毕业论文:纳米空心二氧化硅的合成及在蛋壳形催化剂制备的应用Word文件下载.doc

评阅者:

2012年06月

毕业设计说明书(论文)中文摘要

摘要

本文以正硅酸乙酯(TEOS)为硅源,氨水溶液为催化剂,聚乙烯吡咯烷酮(PVP)功能化的聚苯乙烯为模板,在乙醇介质中利用一步法制得纳米空心二氧化硅,并用TEM,XRD,BET,TG,FTIR等表征手段对SiO2粉体进行分析。

首先,以苯乙烯(St)为单体,过硫酸铵为引发剂,聚乙烯吡咯烷酮为分散剂,水为分散介质,单分散聚合法制备功能化的聚苯乙烯,可得到平均粒径为90nm的聚苯乙烯微球。

以这种微球为模板,在乙醇/氨水介质中,正硅酸乙酯发生水解和缩合,在聚苯乙烯微球包覆形成SiO2,同时PS核被溶解,得到纳米空心二氧化硅微球。

研究氨水用量,TEOS用量及反应时间等因素对二氧化硅微球形貌和产率的影响。

以空心纳米二氧化硅为Li3PO4催化剂载体,催化环氧丙烷的异构化,与以硅胶作为载体的Li3PO4催化剂的催化效果进行比较。

结果表明,使用空心球形二氧化硅代替硅胶作为催化剂载体可提高环氧丙烷转化率和烯丙醇的选择性,降低反应温度和副产物选择性。

关键词:

中空纳米二氧化硅模板法环氧丙烷烯丙醇

毕业设计说明书(论文)外文摘要

TitleSysthesisofNanohollowsilicaandtheapplicationinthepreparationoftheeggshell-shapedcatalyst

Abstract

ThisarticleprepareshollowSiO2nanoparticleswiththetemplateonestepmethod,usingtetraethylorthosilicate(TEOS)asthesilicasource,ammoniawaterasthecatalyst,polyvinylpyrrolidone(PVP)functionalizedpolystyreneasthetemplates.ThebasicperformacesofSiO2powderhasbeencharacterizedbymeansofTEM,XRD,BETandFTIR.

First,usingstyreneasthemonomer,ammoniumpersulfateastheinitiator,polyvinylpyrrolidone(PVP)asthestabilizer,preparesPVPfunctionalizedpolystyrenemicrospheres(PVP/PS),whichaveragesizeis90nm.Inethanol/ammoniawatermedium,hydrolyzationandcondensationofTEOSwerecompleted,SiO2shellswerebuiltaroundthePVP/PStemplates,meanwhilePSnuclearsweredissolved,obtainedhollowsilicamicrospheres.ThemainfactorinfluencingforthemorphologyandproductivityofSiO2astheamountofammoniawater,TEOSandreactiontimeetcwereinvestigated.

UsingNanohollowsilicaasLi3PO4catalystcarrier,Li3PO4/SiO2asthecatalystintheisomerizationofpropyleneoxide,analyzescatalyticeffectsandcompareswithcatalystwhichusingsilicagelasthecarrier.TheresultsshowthatusingNanohollowsilicainsteadofsilicagelasthecatalystcarrier,improvingtheconversionrateofpropyleneoxideandtheselectivityofallyalcohol,reducingtheselectivityofby-productsandthereactiontemperature.

Keywords:

NanohollowsilicaTemplatemethodCharacterizationPropyleneoxide

本科毕业设计说明书(论文)第II页共II页

目次

第一章绪论 1

1.1纳米科学与纳米材料 1

1.2纳米材料的特性 1

1.2.1小尺寸效应 1

1.2.2表面效应 2

1.2.3宏观量子隧道效应 2

1.2.4量子尺寸效应 2

1.3空心球结构纳米材料的研究和发展现状 2

1.4空心球结构纳米材料的制备 3

1.4.1模板法 3

1.4.2喷雾干燥法 3

1.4.3层层自组装法 4

1.4.4超声波法 4

1.4.5模板-界面反应法 5

1.4.6微乳液法 5

1.5空心纳米二氧化硅微球的制备方法及研究现状 5

1.5.1溶胶-凝胶法 5

1.5.2微乳液法 6

1.5.3沉淀法 6

1.6空心纳米二氧化硅微球应用现状及发展前景 7

1.6.1在光电领域的应用 7

1.6.2在新型材料领域的应用 7

1.6.3在医学和生物领域的应用 7

1.6.4在化学领域的应用 7

1.7本课题的主要研究内容 8

第二章空心二氧化硅微球的制备与表征 9

2.1引言 9

2.2实验部分 9

2.2.1实验试剂 9

2.2.2实验设备 9

2.2.3实验过程 10

2.3反应机理 11

2.3.1SiO2形成机理 11

2.3.2空心二氧化硅微球的形成 11

2.4空心球的结构表征方法 12

2.4.1扫描电镜(SEM) 12

2.4.2透射电子显微镜(TEM) 12

2.4.3比表面分析(BET) 12

2.4.4X-射线衍射(XRD) 13

2.4.5红外光谱-FTIR分析 13

2.4.6热重分析(TG) 13

2.5实验结果与讨论 13

2.5.1显微形貌分析 13

2.5.2比表面分析(BET) 14

2.5.3X-射线分析(XRD) 15

2.5.4红外谱图分析(FTIR) 15

2.5.5热重分析 17

2.6生成SiO2的影响因素 172.6.1氨水用量 17

2.6.2TEOS的用量 18

2.6.3反应温度 18

2.6.4溶剂的影响 19

2.6.5洗涤剂种类的影响 19

第三章空心二氧化硅微球在蛋壳型催化剂的应用 21

3.1引言 21

3.2实验方法 21

3.2.1实验试剂与设备 21

3.2.1催化剂的制备 22

3.2.2催化剂效果分析 22

结论 25

致谢 26

参考文献 27

本科毕业设计说明书(论文)第25页共29页

第一章绪论

1.1纳米科学与纳米材料

纳米是英文nanometer的译音,是一个度量单位,1nm=10-9m。

纳米科学与技术是研究尺寸在0.1-100nm的物质组织体系的运动规律和互相作用以及可能在实际应用中的技术问题的科学技术[1]

个纳米之间,也就是说,几十个原子、分子或成千个原子和分子“组合”在一起时,表现出不同于单个原子、分子的性质。

有时这种组合被称为“超分子”或“人工分子”,以区别于正常的原子和分子,这种“超分子”往往具有人们意想不到的性质。

纳米科学主要包括纳米材料学,纳米化学,纳米体系物理学,纳米生物学,纳米电子学,纳米力学,纳米加工[2]

纳米技术是以扫描探针显微镜为技术手段在纳米尺度上研究、利用原子、分子结构的特性及其相互作用原理,并按人类需要在纳米尺度上直接操纵物质表面的分子、原子甚至电子来制造特定产品,或创造纳米级加工工艺的一门新兴交叉学科技术。

狭义的纳米技术是以纳米材料科学为基础制造新材料、新器件、研究新工艺的方法和手段。

纳米科学和技术有时称为纳米科技,是研究一堆原子(团簇)甚至于单个原子或分子的一门学科[3-5]

纳米科技的迅速发展是在二十世纪80年代末、90年代初,它不是某一学科的延伸,也不是某一新工艺的产物,而是基础物理学科与当代高科技的结晶。

它以物理、化学的微观研究理论为基础,以当代精密仪器和先进的分析技术为手段,是一个内容广泛的多学科群。

1.2纳米材料的特性

纳米材料由于其组成材料的纳米尺寸小,一般在1-100nm的粒子,处于原子簇和宏观物体交界的过渡区域[6]。

当物质的纤度减小时,其表面原子数的相对比例增大,使单原子的表面能迅速增大。

到纳米尺寸时,此种形态的变化反馈到物质的结构和性能上,就会显示出奇异的效应及特征[7-11]。

1.2.1小尺寸效应

纳米材料中的微粒尺寸小到与光波波长或德布罗意波波长、超导态的相干长度等物理特征相当或更小时,非晶态纳米微粒的颗粒表面层附近原子密度减小,使得材料的声、光、电、磁、热、力学等性质出现改变而导致新的特性产生的现象就称之为纳米材料的小尺寸效应。

1.2.2表面效应

表面效应是指超细粉末表面原子数与总原子数之比随粒径变小而急剧增大。

例如粒径从100nm减小到1nm,其表面原子占粒子中的原子总数从20%增加到99%。

因为,随着粒子减小,粒子比表面积增大,每克粒径为1nm的粒子比表面积是每克粒子为100nm粒子比表面积的100倍。

比表面的改变导致一系列力学性质的变化,如物理、化学平衡条件的变化,熔点随颗粒尺寸的减小而降低等。

利用这一性质,人们可在许多方面使用纳米材料提高材料的利用率和开发纳米材料的新用途。

1.2.3宏观量子隧道效应

微观粒子具有贯穿势垒能力的效应称为隧道效应。

宏观物理量的量子相干器件中的隧道效应称之为宏观隧道效应。

各种元素的原子具有特定的光谱线,原子模型与量子力学己用能级的概念进行了合理的解释。

由无数的原子构成固体时,单独原子的能级就并合成能带,由于电子数目很多,能带中能级的间距很小,因此可以看作是连续的。

对介于原子、分子与大块固体之间的超微颗粒而言,大块材料中连续的能带将分裂为分立的能级,能级间的间距随颗粒尺寸减小而增大。

当热能、电场能或者磁场能比平均的能级间距还小时,就会呈现一系列与宏观物体截然不同的反常特性,称之为量子尺寸效应。

1.2.4量子尺寸效应

在纳米材料中,微粒尺寸到达与光波波长或其他相干波长等物理特征尺寸相当或更小时,金属费米能级附近的电子能级由准连续变为离散,而纳米半导体微粒存在不连续的最高被占据分子轨道,以及最低未被占据分子轨道能级、能隙变宽现象称之为纳米材料的量子尺寸效应。

1.3空心形纳米材料的研究和发展现状

纳米材料的结构控制和性能研究已成为全球纳米技术的研究热点。

发展具有结构可靠;

和优异性能的纳米功能材料成为材料科学领域的首要任务之一。

空心球形纳米材料是一大类重要的纳米结构材料,是纳米材料构建的新体系。

国内外对空心球结构纳米材料的研究正在兴起,空心球形纳米材料的特殊构造使得这种材料与其它块体材料相比具有比表面积大、密度小等很多特性,因此空心球形纳米材料的应用范围不断扩大,现在已发展到轻体结构材料、隔热、隔声和绝缘材料、颜料及催化剂的载体等领域。

空心微球是一类具有独特形态的材料,粒径在纳米级至微米级,具有比表面积大、密度低、稳定性好等特性。

中空球体因为有独特形态与结构在多个工程领域有应用前景,引起了广泛的关注[12-15]。

如SiO2空心球可用做色谱分离的载体、控制药物缓释的载体及生化试剂或磁性物质的保护剂;

TiO2空心球在精细化工及光催化方而呈现出常规材料所不具备的特殊功能,具有广泛的应用前景;

含有Au、Ag等贵金属的空心球作为重要的催化材料,也具有非常高的应用价值;

此外,聚合物的空心球可以包裹生化酶,用于酶催化反应,也可作为微反应器,使某些特定的反应在其内发生。

空心微球最初是由核/壳复合结构材料演变而来,可通过调节复合材料的结构,尺寸从而达到对其性质的控制,实现对其光、热、电、磁、力学及催化性质的大范围裁剪。

随着科研工作的不断进步,人们已开发出了工艺更简单、条件更温和、不受模板控制、产率更高的合成技术。

1.4空心球形纳米材料的制备

由于空心球形纳米材在催化剂载体、气体吸附、重金属离子吸附、无机物运载、半导体粒子等方面有厂泛的应用,在过去十多年,人们在合成方面进行大量的研究。

制备空心微球,一般都需要球型模板,最常用的模板是胶体粒子,如PS的SiO2胶体颗粒等。

至今,合成技术日益成熟,可作为模板的物质越来越多,如表面活性囊泡[16]、胶束[17]、聚合物[18]、微乳液滴[19]等。

与此同时,喷雾反应技术,超声技术和自组装技术等一些新技术已被引入到空心球的制备方法中。

1.4.1模板法

模板法是制备空心微球的典型方法。

该方法的基本原理是以纳米微粒为模板,在制备过程中,通过静电吸附,化学反应或溶胶-凝胶等手段形成表面包覆的核/壳结构粒子,通过热处理或化学反应去除核模板,得到了空心纳米粒子,球的大小由模板粒子尺寸决定。

模板法是一种直观的方法,被广泛的只用。

用这种方法可制备出纳米或微米尺寸的金属或氧化物微球。

如Yang[20]等用硫酸处理过的PS溶胶粒子作模板,钛酸丁酯在直流电场下发生溶胶-凝胶过程,煅烧除去PS模板后,形成的TiO2空心球具有层柱状的球壳。

但是这种方法也有很大的局限性,因为空心微球的大小由模板尺寸确定,因此必须制备出一定要求的模板,上述的那些手段难以有效地实现对模板的完整包覆,在去除模板过程中容易发生壳层聚合物的凝结,球壳容易破坏,工艺复杂,工作量大。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 幼儿教育 > 幼儿读物

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2