九年级下二次函数图像与性质教案上课讲义.docx

上传人:b****6 文档编号:7433105 上传时间:2023-05-11 格式:DOCX 页数:26 大小:65.46KB
下载 相关 举报
九年级下二次函数图像与性质教案上课讲义.docx_第1页
第1页 / 共26页
九年级下二次函数图像与性质教案上课讲义.docx_第2页
第2页 / 共26页
九年级下二次函数图像与性质教案上课讲义.docx_第3页
第3页 / 共26页
九年级下二次函数图像与性质教案上课讲义.docx_第4页
第4页 / 共26页
九年级下二次函数图像与性质教案上课讲义.docx_第5页
第5页 / 共26页
九年级下二次函数图像与性质教案上课讲义.docx_第6页
第6页 / 共26页
九年级下二次函数图像与性质教案上课讲义.docx_第7页
第7页 / 共26页
九年级下二次函数图像与性质教案上课讲义.docx_第8页
第8页 / 共26页
九年级下二次函数图像与性质教案上课讲义.docx_第9页
第9页 / 共26页
九年级下二次函数图像与性质教案上课讲义.docx_第10页
第10页 / 共26页
九年级下二次函数图像与性质教案上课讲义.docx_第11页
第11页 / 共26页
九年级下二次函数图像与性质教案上课讲义.docx_第12页
第12页 / 共26页
九年级下二次函数图像与性质教案上课讲义.docx_第13页
第13页 / 共26页
九年级下二次函数图像与性质教案上课讲义.docx_第14页
第14页 / 共26页
九年级下二次函数图像与性质教案上课讲义.docx_第15页
第15页 / 共26页
九年级下二次函数图像与性质教案上课讲义.docx_第16页
第16页 / 共26页
九年级下二次函数图像与性质教案上课讲义.docx_第17页
第17页 / 共26页
九年级下二次函数图像与性质教案上课讲义.docx_第18页
第18页 / 共26页
九年级下二次函数图像与性质教案上课讲义.docx_第19页
第19页 / 共26页
九年级下二次函数图像与性质教案上课讲义.docx_第20页
第20页 / 共26页
亲,该文档总共26页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

九年级下二次函数图像与性质教案上课讲义.docx

《九年级下二次函数图像与性质教案上课讲义.docx》由会员分享,可在线阅读,更多相关《九年级下二次函数图像与性质教案上课讲义.docx(26页珍藏版)》请在冰点文库上搜索。

九年级下二次函数图像与性质教案上课讲义.docx

九年级下二次函数图像与性质教案上课讲义

第1课时26.1二次函数

一、阅读教科书

二、学习目标:

1.知道二次函数的一般表达式;

2.会利用二次函数的概念分析解题;

3.列二次函数表达式解实际问题.

三、知识点:

一般地,形如____________________________的函数,叫做二次函数。

其中x是________,a是__________,b是___________,c是_____________.

四、基本知识练习

1.观察:

①y=6x2;②y=-

x2+30x;③y=200x2+400x+200.这三个式子中,虽然函数有一项的,两项的或三项的,但自变量的最高次项的次数都是______次.一般地,如果y=ax2+bx+c(a、b、c是常数,a≠0),那么y叫做x的_____________.

2.函数y=(m-2)x2+mx-3(m为常数).

(1)当m__________时,该函数为二次函数;

(2)当m__________时,该函数为一次函数.

3.下列函数表达式中,哪些是二次函数?

哪些不是?

若是二次函数,请指出各项对应项的系数.

(1)y=1-3x2

(2)y=3x2+2x(3)y=x(x-5)+2

(4)y=3x3+2x2(5)y=x+

五、课堂训练

1.y=(m+1)x

-3x+1是二次函数,则m的值为_________________.

2.下列函数中是二次函数的是()

A.y=x+

B.y=3(x-1)2C.y=(x+1)2-x2D.y=

-x

3.在一定条件下,若物体运动的路段s(米)与时间t(秒)之间的关系为

s=5t2+2t,则当t=4秒时,该物体所经过的路程为()

A.28米B.48米C.68米D.88米

4.n支球队参加比赛,每两队之间进行一场比赛.写出比赛的场次数m与球队数n之间的关系式_______________________.

5.已知y与x2成正比例,并且当x=-1时,y=-3.

求:

(1)函数y与x的函数关系式;

(2)当x=4时,y的值;

(3)当y=-

时,x的值.

 

6.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图).若设绿化带的BC边长为xm,绿化带的面积为ym2.求y与x之间的函数关系式,并写出自变量x的取值范围.

六、目标检测

1.若函数y=(a-1)x2+2x+a2-1是二次函数,则()

A.a=1B.a=±1C.a≠1D.a≠-1

2.下列函数中,是二次函数的是()

A.y=x2-1B.y=x-1C.y=

D.y=

3.一个长方形的长是宽的2倍,写出这个长方形的面积与宽之间的函数关系式.

4.已知二次函数y=-x2+bx+3.当x=2时,y=3,求这个二次函数解析式.

第2课时二次函数y=ax2的图象与性质

一、阅读课本

二、学习目标:

1.知道二次函数的图象是一条抛物线;

2.会画二次函数y=ax2的图象;

3.掌握二次函数y=ax2的性质,并会灵活应用.

三、探索新知:

画二次函数y=x2的图象.

【提示:

画图象的一般步骤:

①列表(取几组x、y的对应值;②描点(表中x、y的数值在坐标平面中描点(x,y);③连线(用平滑曲线).】

列表:

x

-3

-2

-1

0

1

2

3

y=x2

描点,并连线

 

 

由图象可得二次函数y=x2的性质:

1.二次函数y=x2是一条曲线,把这条曲线叫做______________.

2.二次函数y=x2中,二次函数a=_______,抛物线y=x2的图象开口__________.

3.自变量x的取值范围是____________.

4.观察图象,当两点的横坐标互为相反数时,函数y值相等,所描出的各对应点关于________对称,从而图象关于___________对称.

5.抛物线y=x2与它的对称轴的交点(,)叫做抛物线y=x2的_________.

因此,抛物线与对称轴的交点叫做抛物线的_____________.

6.抛物线y=x2有____________点(填“最高”或“最低”).

四、例题分析

例1在同一直角坐标系中,画出函数y=

x2,y=x2,y=2x2的图象.

解:

列表并填:

x

-4

-3

-2

-1

0

1

2

3

4

y=

x2

y=x2的图象刚画过,再把它画出来.

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y=2x2

 

 

归纳:

抛物线y=

x2,y=x2,y=2x2的二次项系数a_______0;顶点都是__________;

对称轴是_________;顶点是抛物线的最_________点(填“高”或“低”).

例2请在例1的直角坐标系中画出函数y=-x2,y=-

x2,y=-2x2的图象.

列表:

x

-3

-2

-1

0

1

2

3

y=x2

x

-4

-3

-2

-1

0

1

2

3

4

y=-

x2

x

-4

-3

-2

-1

0

1

2

3

4

y=-2x2

归纳:

抛物线y=-x2,y=-

x2,y=-2x2的二次项系数a______0,顶点都是________,

对称轴是___________,顶点是抛物线的最________点(填“高”或“低”).

五、理一理

1.抛物线y=ax2的性质

图象(草图)

开口

方向

顶点

对称轴

有最高或最低点

最值

a>0

 

当x=____时,y有最_______值,是______.

a<0

 

当x=____时,y有最_______值,是______.

2.抛物线y=x2与y=-x2关于________对称,因此,抛物线y=ax2与y=-ax2关于_______

对称,开口大小_______________.

3.当a>0时,a越大,抛物线的开口越___________;

当a<0时,|a|越大,抛物线的开口越_________;

因此,|a|越大,抛物线的开口越________,反之,|a|越小,抛物线的开口越________.

六、课堂训练

1.填表:

开口方向

顶点

对称轴

有最高或最低点

最值

y=

x2

当x=____时,y有最_______值,是______.

y=-8x2

2.若二次函数y=ax2的图象过点(1,-2),则a的值是___________.

3.二次函数y=(m-1)x2的图象开口向下,则m____________.

4.如图,

①y=ax2

②y=bx2

③y=cx2

④y=dx2

比较a、b、c、d的大小,用“>”连接.

___________________________________

七、目标检测

1.函数y=

x2的图象开口向_______,顶点是__________,对称轴是________,

当x=___________时,有最_________值是_________.

2.二次函数y=mx

有最低点,则m=___________.

3.二次函数y=(k+1)x2的图象如图所示,则k的取值

范围为___________.

4.写出一个过点(1,2)的函数表达式_________________.

第3课时二次函数y=ax2+k的图象与性质

一、阅读课本

二、学习目标:

1.会画二次函数y=ax2+k的图象;

2.掌握二次函数y=ax2+k的性质,并会应用;

3.知道二次函数y=ax2与y=的ax2+k的联系.

三、探索新知:

在同一直角坐标系中,画出二次函数y=x2+1,y=x2-1的图象.

解:

先列表

x

-3

-2

-1

0

1

2

3

y=x2+1

y=x2-1

描点并画图

 

观察图象得:

1.

开口方向

顶点

对称轴

有最高(低)点

最值

y=x2

y=x2-1

y=x2+1

2.可以发现,把抛物线y=x2向______平移______个单位,就得到抛物线y=x2+1;把抛物线y=x2向_______平移______个单位,就得到抛物线y=x2-1.

3.抛物线y=x2,y=x2-1与y=x2+1的形状_____________.

四、理一理知识点

1.

y=ax2

y=ax2+k

开口方向

顶点

对称轴

一幅画一个家一座山一朵云一片云

有最高(低)点

2、对此我做了以下的摘录:

ABAC式的词语最值

一年级语文下册部分知识点归纳a>0时,当x=______时,y有最____值为________;

a<0时,当x=______时,y有最____值为________.

加两笔:

口——(只)(古)(石)(右)(可)(加)(叶)

①亮晶晶凉冰冰绿油油胖乎乎光秃秃增减性

3、加偏旁组字,再组词。

氵三点水(江河沙)日日字旁(明暗晚)

2.抛物线y=2x2向上平移3个单位,就得到抛物线__________________;

抛物线y=2x2向下平移4个单位,就得到抛物线__________________.

 

高高的山高高的房子高高的大树(15)(地球爷爷)的手就是(地心)引力。

因此,把抛物线y=ax2向上平移k(k>0)个单位,就得到抛物线_______________;

 

一扇门窗一个故事一个城市一座城市一片草地(6)、()那么(),那么()。

把抛物线y=ax2向下平移m(m>0)个单位,就得到抛物线_______________.

(19)燕子低飞、(小鱼)游出(水面)、(蚂蚁)搬家表示要(下雨)了。

zh?

ng(长高)lè(快乐)zhī(一只)kòng(有空)

一条尾巴一只猴子一群猴子一枝铅笔一袋洗衣粉雨越下越大。

天越来越黑。

3.抛物线y=-3x2与y=-3x2+1是通过平移得到的,从而它们的形状__________,由此可得二次函数y=ax2与y=ax2+k的形状__________________.

2、一字开花。

(一字组多词)

辶走之底(过远近)五、课堂巩固训练

 

雪白的云朵雪白的棉花雪白的墙

2、近义词天气渐渐热起来了。

宽宽的街道高高的房子满意的笑容雪白的肚皮1.填表

口字旁:

叶、呢、吧、呀、吓、叫、吹、吃、听、唱函数

草图

 

(男)——(女)湿——(干)红——(绿)十分=特别=非常=格外主意=方法=办法=点子

阅读的复习其实可以说是各个复习知识要点的一个综合体现。

复习阶段,我们可以注重学生这些阅读方法和能力的培养:

①正确、通顺地拼读文字材料,知道大致的意思。

②结合上下文和生活实际理解文中词句的意思。

③运用指定的符号在文中找到要求的语句。

④在文字材料中,寻找问题的答案。

⑤展开想象,感受语言的优美,进行语言的积累。

③又香又甜又大又圆又高又大又细又长四、反义词开口方向

 

10、用两个字组新字:

(如课本133页)贝(宝贝)虾(河虾)写(写字)顶点

对称轴

最值

对称轴右侧的增减性

y=3x2

 

y=-3x2+1

 

y=-4x2-5

 

2.将二次函数y=5x2-3向上平移7个单位后所得到的抛物线解析式为_________________.

3.写出一个顶点坐标为(0,-3),开口方向与抛物线y=-x2的方向相反,形状相同的抛

物线解析式____________________________.

4.抛物线y=4x2+1关于x轴对称的抛物线解析式为______________________.

六、目标检测

1.填表

函数

开口方向

顶点

对称轴

最值

对称轴左侧的增减性

y=-5x2+3

y=7x2-1

2.抛物线y=-

x2-2可由抛物线y=-

x2+3向___________平移_________个单位得到的.

3.抛物线y=-x2+h的顶点坐标为(0,2),则h=_______________.

4.抛物线y=4x2-1与y轴的交点坐标为_____________,与x轴的交点坐标为_________.

第4课时二次函数y=a(x-h)2的图象与性质

一、阅读课本:

二、学习目标:

1.会画二次函数y=a(x-h)2的图象;

2.掌握二次函数y=a(x-h)2的性质,并要会灵活应用;

三、探索新知:

画出二次函数y=-

(x+1)2,y-

(x-1)2的图象,并考虑它们的开口方向、对称轴、顶点以及最值、增减性.

先列表:

x

-4

-3

-2

-1

0

1

2

3

4

y=-

(x+1)2

y=-

(x-1)2

描点并画图.

1.观察图象,填表:

函数

开口方向

顶点

对称轴

最值

增减性

y=-

(x+1)2

y=-

(x-1)2

2.请在图上把抛物线y=-

x2也画上去(草图).

①抛物线y=-

(x+1)2,y=-

x2,y=-

(x-1)2的形状大小____________.

②把抛物线y=-

x2向左平移_______个单位,就得到抛物线y=-

(x+1)2;

把抛物线y=-

x2向右平移_______个单位,就得到抛物线y=-

(x+1)2.

四、整理知识点

1.

y=ax2

y=ax2+k

y=a(x-h)2

开口方向

 

顶点

 

 

对称轴

 

 

最值

 

 

增减性

(对称轴左侧)

 

 

2.对于二次函数的图象,只要|a|相等,则它们的形状_________,只是_________不同.

五、课堂训练

1.填表

图象(草图)

开口

方向

顶点

对称轴

最值

对称轴

右侧的增减性

y=

x2

 

y=-5(x+3)2

 

y=3(x-3)2

 

2.抛物线y=4(x-2)2与y轴的交点坐标是___________,与x轴的交点坐标为________.

3.把抛物线y=3x2向右平移4个单位后,得到的抛物线的表达式为____________________.

把抛物线y=3x2向左平移6个单位后,得到的抛物线的表达式为____________________.

4.将抛物线y=-

(x-1)x2向右平移2个单位后,得到的抛物线解析式为____________.

5.写出一个顶点是(5,0),形状、开口方向与抛物线y=-2x2都相同的二次函数解析式

___________________________.

六、目标检测

1.抛物线y=2(x+3)2的开口______________;顶点坐标为__________________;对称轴是_________;当x>-3时,y______________;当x=-3时,y有_______值是_________.

2.抛物线y=m(x+n)2向左平移2个单位后,得到的函数关系式是y=-4(x-4)2,则

m=__________,n=___________.

3.若将抛物线y=2x2+1向下平移2个单位后,得到的抛物线解析式为_______________.

4.若抛物线y=m(x+1)2过点(1,-4),则m=_______________.

第5课时二次函数y=a(x-h)2+k的图象与性质

一、阅读课本:

二、学习目标:

1.会画二次函数的顶点式y=a(x-h)2+k的图象;

2.掌握二次函数y=a(x-h)2+k的性质;

3.会应用二次函数y=a(x-h)2+k的性质解题.

三、探索新知:

画出函数y=-

(x+1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.

列表:

x

-4

-3

-2

-1

0

1

2

y=-

(x+1)2-1

 

由图象归纳:

1.

函数

开口方向

顶点

对称轴

最值

增减性

y=-

(x+1)2-1

2.把抛物线y=-

x2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y=-

(x+1)2-1.

四、理一理知识点

y=ax2

y=ax2+k

y=a(x-h)2

y=a(x-h)2+k

开口方向

顶点

 

对称轴

 

最值

 

增减性

(对称轴右侧)

 

2.抛物线y=a(x-h)2+k与y=ax2形状___________,位置________________.

五、课堂练习

1.

y=3x2

y=-x2+1

y=

(x+2)2

y=-4(x-5)2-3

开口方向

顶点

 

 

对称轴

 

最值

 

增减性

(对称轴左侧)

 

2.y=6x2+3与y=6(x-1)2+10_____________相同,而____________不同.

3.顶点坐标为(-2,3),开口方向和大小与抛物线y=

x2相同的解析式为()

A.y=

(x-2)2+3B.y=

(x+2)2-3

C.y=

(x+2)2+3D.y=-

(x+2)2+3

4.二次函数y=(x-1)2+2的最小值为__________________.

5.将抛物线y=5(x-1)2+3先向左平移2个单位,再向下平移4个单位后,得到抛物线的解析式为_______________________.

6.若抛物线y=ax2+k的顶点在直线y=-2上,且x=1时,y=-3,求a、k的值.

7.若抛物线y=a(x-1)2+k上有一点A(3,5),则点A关于对称轴对称点A’的坐标为

__________________.

六、目标检测

1.

开口方向

顶点

对称轴

y=x2+1

y=2(x-3)2

y=-(x+5)2-4

2.抛物线y=-3(x+4)2+1中,当x=_______时,y有最________值是________.

3.足球守门员大脚开出去的球的高度随时间的变化而变化,这一过程可近似地用下列哪幅图表示()

ABCD

4.将抛物线y=2(x+1)2-3向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为________________________.

5.一条抛物线的对称轴是x=1,且与x轴有唯一的公共点,并且开口方向向下,则这条抛物线的解析式为____________________________.(任写一个)

第6课时二次函数y=ax2+bx+c的图象与性质

一、阅读课本:

二、学习目标:

1.配方法求二次函数一般式y=ax2+bx+c的顶点坐标、对称轴;

2.熟记二次函数y=ax2+bx+c的顶点坐标公式;

3.会画二次函数一般式y=ax2+bx+c的图象.

三、探索新知:

1.求二次函数y=

x2-6x+21的顶点坐标与对称轴.

解:

将函数等号右边配方:

y=

x2-6x+21

2.画二次函数y=

x2-6x+21的图象.

解:

y=

x2-6x+21配成顶点式为_______________________.

列表:

x

3

4

5

6

7

8

9

y=

x2-6x+21

3.用配方法求抛物线y=ax2+bx+c(a≠0)的顶点与对称轴.

四、理一理知识点:

y=ax2

y=ax2+k

y=a(x-h)2

y=a(x-h)2+k

y=ax2+bx+c

开口方向

顶点

 

 

对称轴

 

最值

 

增减性

(对称轴左侧)

 

五、课堂练习

1.用配方法求二次函数y=-2x2-4x+1的顶点坐标.

2.用两种方法求二次函数y=3x2+2x的顶点坐标.

3.二次函数y=2x2+bx+c的顶点坐标是(1,-2),则b=________,c=_________.

4.已知二次函数y=-2x2-8x-6,当___________时,y随x的增大而增大;当x=________时,y有_________值是___________.

六、目标检测

1.用顶点坐标公式和配方法求二次函数y=

x2-2-1的顶点坐标.

2.二次函数y=-x2+mx中,当x=3时,函数值最大,求其最大值.

第7课时二次函数y=ax2+bx+c的性质

一、复习知识点:

二、学习目标:

1.懂得求二次函数y=ax2+bx+c与x轴、y轴的交点的方法;

2.知道二次函数中a,b,c以及△=b2-4ac对图象的影响

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > PPT模板 > 动态背景

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2