VAR模型与向量VECM模型(15)Word下载.doc

上传人:wj 文档编号:7524373 上传时间:2023-05-08 格式:DOC 页数:20 大小:1.49MB
下载 相关 举报
VAR模型与向量VECM模型(15)Word下载.doc_第1页
第1页 / 共20页
VAR模型与向量VECM模型(15)Word下载.doc_第2页
第2页 / 共20页
VAR模型与向量VECM模型(15)Word下载.doc_第3页
第3页 / 共20页
VAR模型与向量VECM模型(15)Word下载.doc_第4页
第4页 / 共20页
VAR模型与向量VECM模型(15)Word下载.doc_第5页
第5页 / 共20页
VAR模型与向量VECM模型(15)Word下载.doc_第6页
第6页 / 共20页
VAR模型与向量VECM模型(15)Word下载.doc_第7页
第7页 / 共20页
VAR模型与向量VECM模型(15)Word下载.doc_第8页
第8页 / 共20页
VAR模型与向量VECM模型(15)Word下载.doc_第9页
第9页 / 共20页
VAR模型与向量VECM模型(15)Word下载.doc_第10页
第10页 / 共20页
VAR模型与向量VECM模型(15)Word下载.doc_第11页
第11页 / 共20页
VAR模型与向量VECM模型(15)Word下载.doc_第12页
第12页 / 共20页
VAR模型与向量VECM模型(15)Word下载.doc_第13页
第13页 / 共20页
VAR模型与向量VECM模型(15)Word下载.doc_第14页
第14页 / 共20页
VAR模型与向量VECM模型(15)Word下载.doc_第15页
第15页 / 共20页
VAR模型与向量VECM模型(15)Word下载.doc_第16页
第16页 / 共20页
VAR模型与向量VECM模型(15)Word下载.doc_第17页
第17页 / 共20页
VAR模型与向量VECM模型(15)Word下载.doc_第18页
第18页 / 共20页
VAR模型与向量VECM模型(15)Word下载.doc_第19页
第19页 / 共20页
VAR模型与向量VECM模型(15)Word下载.doc_第20页
第20页 / 共20页
亲,该文档总共20页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

VAR模型与向量VECM模型(15)Word下载.doc

《VAR模型与向量VECM模型(15)Word下载.doc》由会员分享,可在线阅读,更多相关《VAR模型与向量VECM模型(15)Word下载.doc(20页珍藏版)》请在冰点文库上搜索。

VAR模型与向量VECM模型(15)Word下载.doc

②特征方程的根全在单位园外;

③,,即相互独立,同服从以为期望向量、为方差协方差阵的维正态分布。

这时,是维白噪声向量序列,由于没有结构性经济含义,也被称为冲击向量;

,即与及各滞后期不相关。

则称上述模型为非限制性VAR模型(高斯VAR模型),或简化式非限制性VAR模型。

2、受限制性VAR模型,或简化式受限制性VAR模型

如果将做为一维内生的随机时间序列,受维外生的时间序列

影响(限制),则VAR模型为

,(15.1.4)

或利用滞后算子表示成

(15.1.5)

其中:

此时称该模型为受限制性VAR模型,简化式受限制性VAR模型。

对于受限制性VAR模型,可通过对作OLS回归,得到残差估计

,从而将变换成(15.1.2)或(15.1.3)形式的非限制性VAR模型,即

,(15.1.6)

(15.1.7)

这说明受限制性VAR模型可化为非限制性VAR模型。

简化式非限制、受限制VAR模型,皆简记为。

3、结构式非限制性VAR模型

如果中的每一分量受其它分量当期影响,无维外生的时间序列影响(限制),则模型化为

,(15.1.8)

(15.1.9)

其中:

这时的

此时称该模型为结构式非限制性VAR模型。

如果可逆,既逆阵存在,则结构式非限制性VAR模型可化为简化式非限制性VAR模型

,(15.1.10)

(15.1.11)

这时,其中的

4、结构式受限制性VAR模型

如果将做为一维内生的随机时间序列,其中每一分量受其它分量当期影响,且还受维外生的时间序列影响(限制),则VAR模型为

,(15.1.12)

(15.1.13)

此时称该模型为结构式受限制性VAR模型。

如果可逆,既逆阵存在,则结构式受限制性VAR模型可化为简化式受限制性VAR模型

,(15.1.14)

(15.1.15)

这时,其中的

结构式非限制、受限制VAR模型,皆简记为。

15.1.2简化式VAR模型的参数估计

VAR模型参数估计,简化式VAR模型比较简单可采用Yule-Walker估计、OLS估计、极大似然估计法等进行估计,且可获得具有良好统计性质的估计量。

结构式VAR模型参数估计比较复杂,可有两种途径:

一种是化成简化式,直接估计简化式模型参数,然后再通过简化式模型参数与结构式模型参数的关系,求得结构式模型参数估计,但这存在一个问题是否可行,什么情况下可行,这与结构式模型的识别性有关。

另一种途径是直接对结构式模型参数进行估计,但这也存在一个问题,上述方法不可应用,原因是每一方程含有众多内生的与扰动项相关变量,那么,如何估计?

这也与结构式模型的识别性有关。

对于简化式VAR模型(15.1.1)—(15.1.3),在冲击向量满足假设,,即相互独立,同服从以为期望向量、为方差协方差阵的维正态分布。

这时,是维白噪声向量序列的条件下,模型参数阵及也可采用Yule-Walker估计、OLS估计、极大似然估计。

设,为长度为的样本向量

①Yule-Walker估计

在充分大时,首先估计自协方差阵

(15.1.16)

令,

则可得模型参数阵的Yule-Walker估计(矩估计)为

(15.1.17)

②估计

模型参数阵的OLS估计,即求使

下的作为估计。

记(15.1.18)

由此可推得

(15.1.19)

由此可见,模型参数阵的OLS估计(15.1.15)与Yule-Walker估计(15.1.13)形式相同,

但式中的的计算不同.但是,当充分大时,(15.1.16)与(15.1.18)相差很小,这时(15.1.17)与(15.1.19)相差也很小,这时二者的估计及估计量的性质等价。

因此,在充分大时,可直接采用Yule-Walker估计比较简单方便。

而的估计为(15.1.20)

③极大似然估计

可证明,模型参数阵的极大似然估计与OLS估计完全等价。

除此之外,还有递推估计法(参见:

马树才,《经济时序分析》,辽宁大学出版社,1997.1.pp199),

这里不在赘述。

15.1.3简化式VAR模型的预测

在已知时,对的一步线性预测

(15.1.21)

其一步预测误差为

一步预测误差的方差阵为的估计为

(15.1.22)

在已知时,如果利用模型参数的估计量,对进行一步线性预测,则

的实际一步线性预测为(15.1.23)

其一步预测误差为

(15.1.24)

15.1.4VAR模型阶数p的确定

VAR模型的定阶是一个矛盾过程,阶数p的确定,既不能太大,又不能太小,必须兼顾。

因为,一方

面,希望滞后阶数p要大一些,以便使模型能更好地反映出动态特征,但另一方面,又不希望太大,否则,阶数p太大,会造成需要估计的模型参数过多,而使模型自由度减少。

因此,在定阶时需要综合考虑,以既要有足够大的滞后项,又能有足够大的自由度为原则确定阶数。

VAR模型的定阶方法有多种:

1、FPE准则(最小最终预测误差准则)

FPE准则(最小最终预测误差准则),即利用一步预测误差方差进行定阶。

因为,如果模型阶数合适,则模型对实际数据拟合优度必然会高,其一步预测误差方差也必然会小;

反之,则相反。

设给定时间序列向量长度为的样本向量为,,则其一步预测误差方差阵的估计量为(15.1.24)式,它是一个阶阵,因此可定义其最终预测误差为

(15.1.25)

显然,是的函数。

所谓最小最终预测误差准则,就是分别取=1,2,…,M,来计算,使值所对应的,为模型合适阶数。

相应的模型参数估计为最佳模型参数估计。

其中,M为预先选定的阶数上界,一般取之间。

在实际计算过程中,可如下判断:

如果的值,随着从1开始逐渐增大就一直上升,则可判定=1;

如果如果的值,随着从1开始逐渐增大就一直下降,则可判定该随机时间序列不能用AR(p)模型来描述;

如果的值,在某一值下降很快,而后又缓慢下降,则可判定该值为所确定的阶数;

如果的值,随着从1开始逐渐增大而上下剧烈跳动,难以找到最小值,这可能由于样本数据长度T太小造成的,应增大样本长度,重新进行定阶、估计模型参数,建立模型。

利用FPE信息准则还可以用来检验模型的建立是否可由部分分量,比如前个分量,来进行。

记(15.1.21)式中的阶矩阵的左上角阶子方阵为,则前个分量,的最终预测误差为

(15.1.26)

当时,(15.1.26)为(15.1.25)式。

如果,,则可认为仅用前个分量,建立模型即可,没有必要采用维随机时间序列建立模型,因为从最小最终预测误差准则角度,用维随机时间序列建立模型比仅采前个分量,建立模型,带来拟合优度的显著改善;

2、AIC(AkaikeInformationCriterion)与SC(BayesInformationCriterion)信息准则

AIC、SC信息准则,也称最小信息准则,定义

,(15.1.27)

为模型需要估计参数个数,对(15.1.1),;

对于(15.1.4),;

对于(15.1.8),;

对于(15.1.12),。

所谓最小信息准则,就是分别取=1,2,…,来计算AIC或者SC,使AIC或SC值所对应的,为模型合适阶数。

3、似然比检验法(LikelihoodRatio,LR检验):

由于,,即相互独立,同服从以为期望向量、为方差协方差阵的维正态分布。

因此,

记,则在给的条件下,的条件,即

于是,在给的条件下,的联合分布密度,即似然函数为

对数似然函数为

将参数估计代入,则有

,又

因此,有(15.1.28)

现在,欲检验假设样本数据是由滞后阶数为的VAR模型生成;

样本数据是由滞后阶数为的VAR模型生成

取似然比统计量为

分布(15.1.29)

在给定的显著性水平下,当,则拒绝,表明增加滞后阶数,可显著增大似然函数值;

否则,则相反。

检验在小样本下,可取似然比统计量为

分布(15.1.30)

其中,.

15.1.5VAR模型的Granger因果关系检验

VAR模型的另一重要应用是可用来检验一个变量与另一变量间是否存在Granger因果关系,这也是建立VAR模型所需要的。

1、Granger因果关系的涵义

设为一维随机时间序列,如果在给定的滞后值下的条件分布与仅在给定的的滞后值下的条件分布相同,即

则称对存在Granger非因果性关系,否则,对存在Granger因果性关系。

Granger因果性关系涵义的另一表述:

在其条件不变下,如果加上的滞后值,并不对只由的滞后值下对进行预测有显著改善,则称对存在Granger非因果性关系,否则,对存在Granger因果性关系。

2、Granger因果关系检验

设为一维随机时间序列,为滞后阶数,为一维随机扰动的时间序列,则有2元VAR模型为

(15.1.31)

显然,欲检验对是否存在Granger非因果性关系,等价地,

检验假设;

中至少有一个不为0。

其用于检验的统计量为

(15.1.32)

其中,为模型(15.1.31)中第1方程残差平方和,为模型(15.1.31)中第1方程去掉各期滞后项后拟合残差平方和。

在给定的显著性水平下,当时,拒绝。

如果模型(15.1.31)满足,,即相互独立,同服从以为

期望向量、为方差协方差阵的维正态分布条件,则

也可采用如下统计量进行检验

(15.1.33)

在给定的显著性水平下,当时,拒绝,

上述Granger因果性关系检验,可推广到对任意维VAR模型以及SVAR模型中的某一或某几个随机时

间序列(包括内生、外生变量)是否对另一时间序列具有Granger因果性的检验上去。

§

15.2VAR(p)模型的脉冲响应函数与方差分解

在实际应用中,由于通常所设定的VAR模型都是非经济理论性的简化式模型,出它无需对变量作任何先验性约束,因此,在分析应用中,往往并不利用VAR模型去分析某一变量的变化对另一变量的影响如何,而是分析当某一扰动项发生变化,或者说模型受到某种冲击时,对系统的动态影响,这钟分析方法称为脉冲响应函数方法(ImpulseResponseFunction,IRF)。

15.2.1脉冲响应函数基本思想

对VAR模型采用脉冲响应函数分析扰动项发生变化,或者说模型受到某种冲击时,对系统的动态影响,就是分析扰动项发生变化是如何传播到各变量的。

设为一维随机时间序列,滞后阶数=2,为一维随机扰动的时间序列,则有2元VAR模型为

(15.2.1)

扰动项满足白噪声假设条件,即

现在假设上述VAR模型系统从时期开始运行,并设,在时给定扰动项并且其后,即在时给定一脉冲,我们来讨论的响应。

由于由(15.2.1),在时,于是有,;

将上述结果再代入(15.2.1),在时,于是有,;

再将上述结果代入(15.2.1),在2时,于是有,

如此下去,可求得结果,称此结果为由的冲脉冲引起的的响应函数;

所求得的,称为由的冲脉冲引起的的响应函数。

反过来,也可求得在时,给定扰动项并且其后,即在

给定一脉冲时,由的冲脉冲引起的、的响应函数。

15.2.2VAR模型的脉冲响应函数

假设有VAR(p)模型,(15.2.2)

引入滞后算子,表示成

(15.2.3)

在满足特征方程的根全在单位园外条件下,则

VAR(p)是可逆的,即可将表示成白噪声滑动和形式

(15.2.4)

阶单位阵)

(15.2.4)中第方程为

(15.2.5)

当时,(15.2.4)为

(15.2.6)

现在假定在基期给一个单位脉冲,即

则可求得由的脉冲引起的响应函数为:

由此可看出,对于(15.2.4)式的一般情形,由的脉冲引起的响应函数为:

由的脉冲引起的累积响应函数为:

由(15.2.4)式,其中的中的第行、第列元素可表示为

(15.2.7)

作为的函数,它描述了在时期,其他变量和早期变量不变的情况下,对的一个冲击的反应,称

为脉冲——响应函数。

用矩阵可表示为=(15.2.8)

即中的第行、第列元素等于时期的第变量扰动项增加一个单位,其它时期扰动项为常数时,对

时期的第个变量值的影响。

15.2.3方差分解

VAR模型的脉冲响应函数是用来描述VAR模型中一个内生变量的冲击给其它内生变量所带来的影响的,

它是随时间的推移,观察模型中各变量对于冲击是如何反应的。

而方差分解是要通过分析每一结构冲击对内生变量变化(通常用方差来度量)的贡献度,进一步评价不同结构冲击的重要性的,与脉冲响应函数相比,方差分解是一种比较粗糙的把握变量间关系的方法,它给出的是对VAR模型中的变量产生影响的每个扰动项的相对重要信息。

方差分解的基本思想是:

由(15.2.5)式

(15.2.9)

可知,左边括号内为是第扰动项从过去无限远至现在时点对第内生变量影响的总和。

在,无序列相关的假设下,对其求方差,可得

(15.2.10)

它是把第扰动项从过去无限远至现在时点对第内生变量影响总和,用方差加以评价的结果。

如果为对角阵,则的方差为

(15.2.11)

由此可知,的方差可分解成个不相关的()的影响。

由此,可测定出各个扰动项对方差的相对方差贡献率为

(15.2.12)

在实际应用计算中,不可能从过去无限远的来评价。

在模型满足平稳性条件下,由于随着的增大是按几何级数衰减的,故只要取前有限项计算即可。

其近似相对方差贡献率为

,(15.2.13)

有如下性质:

①(15.2.14)

②(15.2.15)

如果大,则意味着第变量(第扰动项)对第变量影响大,反之,则相反。

15.3SVAR(p)模型

15.3.1SVAR模型的识别与约束条件

如果中的每一分量受其它分量当期影响,无维外生的时间序列影响(限制),则由(15.1.8)式,结构式非限制性SVAR(p)模型为

,(15.3.1)

(15.3.2)

这时的

此时称该模型为结构式非限制性SVAR模型。

结构式非限制性SVAR模型,即使在扰动项满足白噪声条件下也不能采用普通最小二乘法估计模型参数来建立模型,因为每一方程含有同期相关的变量。

如果可逆,既逆阵存在,则结构式非限制性SVAR模型可化为简化式非限制性VAR模型

,(15.3.3)

(15.3.4)

若记(15.3.5)

则(15.3.4)可写成

,(15.3.6)

简化式非限制性模型VAR所含需要估计参数个数为

(15.3.7)

其中,为扰动项的方差协方差阵所含未知待估计参数个数。

在扰动项满足白噪声条件下,(15.3.6)式可采用普通最小二乘法估计上述模型参数,来建立其简化式非限制性VAR模型。

我们知道,结构式非限制性SVAR模型(15.3.1),即使在扰动项满足白噪声条件下也不能采用普通最小二乘法估计模型参数来建立模型,因为每一方程含有同期相关的变量。

既然其简化式非限制性VAR模型(15.3.6)模型参数可以通过普通最小二乘法估计,那么,可否根据上述简化式非限制性VAR模型的模型参数与结构式非限制性SVAR模型的模型参数之间的关系式(15.3.5),通过已估计的简化式非限制性VAR模型参数,得到相应的结构式非限制性SVAR模型参数建立模型?

这就涉及到结构式非限制性SVAR模型(15.3.1)的识别性(关于识别性及其方法,可见14章联立方程内容),或者说取决于对结构式非限制性SVAR模型所施加的约束条件。

因为,由结构式非限制性SVAR模型(15.3.1)可知,其需要估计的模型参数个数共

(15.3.8)

,所以,如果不对结构式非限制性SVAR模型(15.3.1)施加限制条件,其模型参数不可估计。

那么,对结构式非限制性SVAR模型(15.3.1)需要施加多少限制或约束条件?

需要施加的约束条件数恰好为

[]—[](15.3.9)

即只要施加个约束条件,则结构式非限制性SVAR模型(15.3.1)的模型参数就可估计。

所施加的约束条件既可以是短期(同期)的,也可以是长期的。

1、短期约束

结构式非限制性SVAR模型(15.3.1)式

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中教育 > 语文

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2