纳米材料及技术docWord文件下载.docx

上传人:b****3 文档编号:7652808 上传时间:2023-05-08 格式:DOCX 页数:7 大小:19.82KB
下载 相关 举报
纳米材料及技术docWord文件下载.docx_第1页
第1页 / 共7页
纳米材料及技术docWord文件下载.docx_第2页
第2页 / 共7页
纳米材料及技术docWord文件下载.docx_第3页
第3页 / 共7页
纳米材料及技术docWord文件下载.docx_第4页
第4页 / 共7页
纳米材料及技术docWord文件下载.docx_第5页
第5页 / 共7页
纳米材料及技术docWord文件下载.docx_第6页
第6页 / 共7页
纳米材料及技术docWord文件下载.docx_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

纳米材料及技术docWord文件下载.docx

《纳米材料及技术docWord文件下载.docx》由会员分享,可在线阅读,更多相关《纳米材料及技术docWord文件下载.docx(7页珍藏版)》请在冰点文库上搜索。

纳米材料及技术docWord文件下载.docx

建立了相应的理论,例如原子核物理、粒子物理、量子力学等。

相对而言,在原子、分子与宏观物质的中间领域,人类的认识还相当肤浅,被誉为有待开拓的“处女地”。

近20年以来,人类已经发现,在微观到宏观的中间物质出现了许多既不同于宏观物质,也不同于微观体系的奇异现象。

下面对纳米材料的研究历史作简要介绍。

1000年以前。

当时,中国人利用燃烧的蜡烛形成的烟雾制成碳黑,作为墨的原料或着色染料,科学家们将其誉为最早的纳米材料。

中国古代的铜镜表面防锈层是由Sn02颗粒构成的薄膜,遗憾的是当时人们并不知道这些材料是由肉眼根本无法看到的纳米尺度小颗粒构成。

1861年,随着胶体化学colloidchemistry的建立,科学家们开始对1lOOnm的粒子系统进行研究。

但限于当时的科学技术水平,化学家们并没有意识到在这样一个尺寸范围是人类认识世界的一个崭新层次,而仅仅是从化学角度作为宏观体系的中间环节进行研究。

20世纪初,有人开始用化学方法制备作为催化剂使用的铂超微颗粒。

1929年,有人用Al、Cr、Cu、Fe等金属作电极,在空气中产生弧光放电,得到了15种金属氧化物的溶胶。

并开始对超微颗粒进行X光射线实验研究。

1940年,有人首次采用电子显微镜对金属氧化物的烟状物进行观察。

1945年,Balk提出在低压惰性气体中获得金属超微粒子的方法。

20世纪上半叶的研究特点是,人类已经自觉地把纳米微粒作为研究对象来探索纳米体系的奥秘。

20世纪50年代末,有人预计,在微米、亚微米纳米材料尺寸上限的细小体系中,一束电子分成两束,以形成不同的位相,重新相遇后会产生电子波函数相干现象,从而导致电导的波动性。

60年代初,有人用实验观察到了电子束的波动性。

几乎在同一时期,日本理论物理大师R.Kubo在金属超微粒子的理论研究中发现,金属粒子显示出与块状物质不同的热性质,被科学界称做Kubo效应。

1963年,通过在纯净气体中的蒸发和冷凝过程获得了单个金属微粒的形貌和晶体结构。

70年代末,美国人发明了激光驱动气相合成数十纳米尺寸的硅基陶瓷粉末Si、SiC、Si3N4,从此,人类开始了规模生产纳米材料的历史。

70年代末到80年代初,人类对纳米微粒的结构、形态和特性进行了比较系统的研究,在描述金属微粒方面可达电子能级状态的Kubo理论日臻完善,在用量子尺寸效应解释超微粒子等特性方面也获得了极大成功。

1984年,制备出了具有清洁界面的纳米晶体Pd、Cu、Fe等多晶纳米固体。

1987年,美国用同样方法制备了人工纳米材料Ti02等晶体。

90年代初,采用各种方法制备的人工纳米材料已多达百种,其中,引起科技界极大重视的纳米粒子应属于团簇粒子。

团簇的尺寸一般在1nm以下,它由几个到几百个原子构成。

1985年,美国科学家用激光加热石墨蒸发法在甲苯中形成碳的团簇C6o和C70。

1991年,发现了完全由碳原子构成的纳米碳管。

纵观90年代纳米材料研究现状,可以证明人类已在各个学科层面上开展了深入细致的研究并逐渐形成了纳米科学与技术群和高科技生长点。

0.3纳米材料的主要研究内容所谓纳米材料,从狭义上说,就是有关原子团簇、纳米颗粒、纳米线、纳米薄膜、纳米碳管和纳米固体材料的总称。

从广义上看,纳米材料应该是晶粒或晶界等显微构造能达到纳米尺寸水平的材料。

当然,纳米材料的制备原料首先必须是纳米级的。

按传统的材料学科体系划分,纳米材料又可进一步分为纳米金属材料、纳米陶瓷材料、纳米高分子材料和纳米复合材料。

若按应用目的分类,可将纳米材料分为纳米电子材料、纳米磁性材料、纳米隐身材料、纳米生物材料等等。

为了便于叙述纳米材料的主要研究内容,将从狭义的角度加以介绍。

1.原子团簇原子团是由多个原子组成的小粒子,它们比无机分子大,但比具有平移对称性的块体材料小,它们的原子结构键长、键角和对称性等和电子结构不同于分子,也不同于块体。

原子团簇的尺寸一般小于20nm,约含几个到105个原子。

原子团簇具有很多独特性质1具有硕大的表面积比而呈现出表面或界面效应;

2幻数效应;

形状和对称性多种多样3原子团尺寸小于临界值时的“库仑爆炸”(自旋状态改变,库仑排斥力增强)4原子团逸出功的振荡行为等。

目前,研究原子团簇的结构与特性主要有两方面的工作,一方面是理论计算原子团簇的原子结构、键长、键角和排列能量最小的可能存在结构;

另一方面是实验研究原子团簇的结构与特性,制备原子团,并设法保持其原有特性压制成块,进而开展相关应用研究。

2.纳米颗粒纳米颗粒是指颗粒尺寸为纳米量级的超微颗粒,它的尺度大于原子团簇,小于通常的微粉,一般在1-100nm之间。

这样小的物体只能用高分辨的电子显微镜观察。

为此,日本名古屋大学上田良二教授给纳米颗粒下了一个定义用电子显微镜才能看到的微粒称为纳米颗粒。

纳米颗粒与原子团簇不同,它们一般不具有幻数效应,但具有量子效应、表面效应和分形聚集特性等。

纳米颗粒的应用前景,除了光、电、磁、敏感和催化特性外,就是由550nm的纳米颗粒在高真空下原位压制纳米材料,或制作纳米颗粒涂层,或根据纳米颗粒的特性设计紫外反射涂层、红外吸收涂层、微波隐身涂层,以及其他的纳米功能薄膜。

3.纳米碳球纳米碳球的主要代表是C60。

由此可见,60个C原子组成封闭的球形,是32面体,即由20个六边形类似苯环和12个五边形构成一个完整C60。

这种结构与常规的碳的同素异形体金刚石和石墨层状结构完全不同,物理化学性质非常奇特,如电学性质、光学性质和超导特性。

4.纳米碳管纳米碳管是纳米材料的一支新军。

它由纯碳元素组成,是由类似石墨六边形网格翻卷而成的管状物,管子两端一般由含五边形的半球面网格封口。

纳米碳管直径一般在120nm之间,长度可以从纳米至微米量级。

纳米碳管有许多特性,有强烈的应用背景,预测它们在超细高强纤维、复合材料、大规模集成电路、超导线材和多相催化等方面有着广泛的用途。

5.纳米薄膜与纳米涂层这种薄膜具有纳米结构的特殊性质,目前可以分为两类1含有纳米颗粒与原子团簇基质薄膜;

2纳米尺寸厚度的薄膜,其厚度接近电子自由程和Debye德布罗依长度,可以利用其显著的量子特性和统计特性组装成新型功能器件。

例如,镶嵌有原子团的功能薄膜会在基质中呈现出调制掺杂效应,该结构相当于大原子超原子膜材料,具有三维特征;

纳米厚度的信息存贮薄膜具有超高密度功能,这类集成器件具有惊人的信息处理能力;

纳米磁性多层膜具有典型的周期性调制结构,导致磁性材料的饱和磁化强度的减小或增强。

对这些问题的系统研究具有重要的理论和应用意义。

6.纳米固体材料具有纳米特征结构的固体材料称为纳米固体材料。

例如,由纳米颗粒压制烧结而成的三维固体,结构上表现为颗粒和界面双组元;

原子团簇堆压成块体后,保持原结构而不发生结合长大反应的固体。

原子团用高速高压气流带动等。

其中,由原子团簇堆压成的纳米金属材料具有很大的强度和稳定性,以及很强的导电能力,这类材料存在大量晶界,呈现出特殊的机械、电、磁、光和化学性质。

已经发现,由纳米硅晶粒和晶界组成的纳米固体材料,其晶粒和边界几乎各占体积一半,具有比本征晶体硅高的电导率和载流子迁移率,电导率的温度系数很小,这些特殊性正在被进一步研究。

7。

纳米复合材料增强相为纳米颗粒、纳米晶须、纳米晶片、纳米纤维的复合材料称为纳米复合材料。

增强相必须是纳米级;

基体可以是纳米级,也可以是常规材料。

纳米第二相的加入,可提高基体的性能。

纳米复合材料包括金属基、陶瓷基和高分子基纳米复合材料。

复合方式有晶内型、晶间型、晶内晶间混合型、纳米·

纳米型等。

纳米薄膜材料制备技术2007-05-15161327转载纳米薄膜分为两类一类是由纳米粒子组成或堆砌而成的薄膜,另一类是在纳米粒子间有较多的孔隙或无序原子或另一种材料。

纳米粒子镶嵌在另一基体材料中的颗粒膜就属于第二类纳米薄膜。

纳米薄膜的制备方法按原理可分为物理方法和化学方法两大类,按物质形态主要有气相法和液相法两种。

1、物理方法1)、真空蒸发单源单层蒸发;

单源多层蒸发;

多源反应共蒸发2)、磁控溅射3)、离子束溅射(单离子束反应溅射;

双离子束反应溅射;

多离子束反应共溅射)4)、分子束外延MBE2、化学方法1)化学气相沉积CYD金属有机物化学气相沉积;

热解化学气相沉积;

等离子体增强化学气相沉积;

激光诱导化学气相沉积;

微波等离子体化学气相沉积。

2)溶胶-凝胶法3)电镀法3.2.1物理气相沉积法物理气相沉积PVD方法作为一类常规的薄膜制备手段被广泛地应用于纳米薄膜的制备与研究工作中,PVD包括蒸镀、电子束蒸镀、溅射等。

2分子束外延。

以蒸镀为基础发展起来的分子束外延技术和设备,经过十余年的开发,近年来已制备出各种ⅢV族化合物的半导体器件。

外延是指在单晶基体上生长出位向相同的同类单晶体同质外延,或者生长出具有共格或半共格联系的异类单晶体异质外延。

目前分子束外延的膜厚控制水平已经达到单原子层,甚至知道某一单原子层是否已经排满,而另一层是否已经开始生长。

3.溅射制膜溅射制膜是指在真空室中,利用荷能粒子轰击靶材表面,使被轰击出的粒子在基片上沉积的技术。

溅射镀膜有两种。

一种是在真空室中,利用离子束轰击靶表面,使溅射击的粒子在基片表面成膜,这称为离子束溅射。

离子束要由特制的离子源产生,离子源结构较为复杂,价格较贵,只是在用于分析技术和制取特殊的薄膜时才采用离子束溅射。

另一种是在真空室中,利用低压气体放电现象,使处于等离子状态下的离子轰击靶表面,并使溅射出的粒子堆积在基片上

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2