水文地质与工程专业外文文献翻译Word文档下载推荐.docx

上传人:b****4 文档编号:7819392 上传时间:2023-05-09 格式:DOCX 页数:19 大小:102.14KB
下载 相关 举报
水文地质与工程专业外文文献翻译Word文档下载推荐.docx_第1页
第1页 / 共19页
水文地质与工程专业外文文献翻译Word文档下载推荐.docx_第2页
第2页 / 共19页
水文地质与工程专业外文文献翻译Word文档下载推荐.docx_第3页
第3页 / 共19页
水文地质与工程专业外文文献翻译Word文档下载推荐.docx_第4页
第4页 / 共19页
水文地质与工程专业外文文献翻译Word文档下载推荐.docx_第5页
第5页 / 共19页
水文地质与工程专业外文文献翻译Word文档下载推荐.docx_第6页
第6页 / 共19页
水文地质与工程专业外文文献翻译Word文档下载推荐.docx_第7页
第7页 / 共19页
水文地质与工程专业外文文献翻译Word文档下载推荐.docx_第8页
第8页 / 共19页
水文地质与工程专业外文文献翻译Word文档下载推荐.docx_第9页
第9页 / 共19页
水文地质与工程专业外文文献翻译Word文档下载推荐.docx_第10页
第10页 / 共19页
水文地质与工程专业外文文献翻译Word文档下载推荐.docx_第11页
第11页 / 共19页
水文地质与工程专业外文文献翻译Word文档下载推荐.docx_第12页
第12页 / 共19页
水文地质与工程专业外文文献翻译Word文档下载推荐.docx_第13页
第13页 / 共19页
水文地质与工程专业外文文献翻译Word文档下载推荐.docx_第14页
第14页 / 共19页
水文地质与工程专业外文文献翻译Word文档下载推荐.docx_第15页
第15页 / 共19页
水文地质与工程专业外文文献翻译Word文档下载推荐.docx_第16页
第16页 / 共19页
水文地质与工程专业外文文献翻译Word文档下载推荐.docx_第17页
第17页 / 共19页
水文地质与工程专业外文文献翻译Word文档下载推荐.docx_第18页
第18页 / 共19页
水文地质与工程专业外文文献翻译Word文档下载推荐.docx_第19页
第19页 / 共19页
亲,该文档总共19页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

水文地质与工程专业外文文献翻译Word文档下载推荐.docx

《水文地质与工程专业外文文献翻译Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《水文地质与工程专业外文文献翻译Word文档下载推荐.docx(19页珍藏版)》请在冰点文库上搜索。

水文地质与工程专业外文文献翻译Word文档下载推荐.docx

Thisstudydealswiththecomparisonofexistinganalyticalsolutionsforthesteady-stategroundwaterinflowintoadrainedcirculartunnelinasemi-infiniteaquifer.Twodifferentboundaryconditions(oneforzerowaterpressureandtheotherforaconstanttotalhead)alongthetunnelcircumference,usedintheexistingsolutions,arementioned.Simpleclosed-formanalyticalsolutionsarere-derivedwithinacommontheoreticalframeworkfortwodifferentboundaryconditionsbyusingtheconformalmappingtechnique.Thewaterinflowpredictionsarecomparedtoinvestigatethedifferenceamongthesolutions.Thecorrectuseoftheboundaryconditionalongthetunnelcircumferenceinashallowdrainedcirculartunnelisemphasized.Ó

2007ElsevierLtd.Allrightsreserved.

Keywords:

Analyticalsolution;

Tunnels;

Groundwaterflow;

Semi-infiniteaquifer

1.Introduction

Predictionofthegroundwaterinflowintoatunnelisneededforthedesignofthetunneldrainagesystemandtheestimationoftheenvironmentalimpactofdrainage.Recently,ElTani(2003)presentedtheanalyticalsolutionofthegroundwaterinflowbasedonMobiustransformationandFourierseries.Bycompilingtheexactandapproximatesolutionsbymanyresearchers(Muscat,Goodmanetal.,Karlsrud,Rat,Schleiss,Lei,andLombardi),ElTani(2003)showedthebigdifferenceinthepredictionofgroundwaterinflowbythesolutions.KolymbasandWagner(2007)alsopresentedtheanalyticalsolutionforthegroundwaterinflow,whichisequallyvalidfordeepandshallowtunnelsandallowsvariabletotalheadatthetunnelcircumferenceandatthegroundsurface.

Whileseveralanalyticalsolutionsforthegroundwaterinflowintoacirculartunnelcanbefoundintheliterature,theycannotbeeasilycomparedwitheachotherbecauseoftheuseofdifferentnotations,assumptionsofboundaryconditions,elevationreferencedatum,andsolutionmethods.

Inthisstudy,weshallrevisittheclosed-formanalyticalsolutionforthesteady-stategroundwaterinflowintoadrainedcirculartunnelinasemi-infiniteaquiferwithfocusontwodifferentboundaryconditions(oneforzerowaterpressureandtheotherforaconstanttotalhead)alongthetunnelcircumference,usedintheexistingsolutions.Thesolutionsfortwodifferentboundaryconditionsarere-derivedwithinacommontheoreticalframeworkbyusingtheconformalmappingtechnique.Thedifferenceinthewaterinflowpredictionsamongtheapproximateandexactsolutionsisre-comparedtoshowtherangeofappli-cabilityofapproximatesolutions.

2.Definitionoftheproblem

Consideracirculartunnelofradiusrinafullysaturated,homogeneous,isotropic,andsemi-infiniteporousaquiferwithahorizontalwatertable(Fig.1).Thesurroundinggroundhastheisotropicpermeabilitykandasteady-stategroundwaterflowconditionisassumed.

tunnelinasemi-infiniteaquifer.

AccordingtoDarcy’slawandmassconservation,thetwo-dimensionalsteady-stategroundwaterflowaroundthetunnelisdescribedbythefollowingLaplaceequation:

(1)

where

=totalhead(orhydraulichead),beinggivenbythesumofthepressureandelevationheads,or

(2)

p=pressure,

=unitweightofwater,Z=elevationhead,whichistheverticaldistanceofagivenpointaboveorbelowadatumplane.Here,thegroundsurfaceisusedastheelevationreferencedatumtoconsiderthecaseinwhichthewatertableisabovethegroundsurface.NotethatE1Tani(2003)usedthewaterlevelastheelevationreferencedatum,whereasKolymbasandWagner(2007)usedthegroundsurface.

InordertosolveEq.

(1),twoboundaryconditionsareneeded:

oneatthegroundsurfaceandtheotheralongthetunnelcircumference.Theboundaryconditionatthegroundsurface(y=0)isclearlyexpressedas

(3)

Inthecaseofadrainedtunnel,however,twodifferentboundaryconditionsalongthetunnelcircumferencecanbefoundintheliterature:

(Fig.1)

(1)Case1:

zerowaterpressure,andsototalhead=elevationhead(ElTani,2003)

(4)

(2)Case2:

constanttotalhead,ha(Lei,1999;

KolymbasandWagner,2007)

(5)

ItshouldbenotedthattheboundaryconditionofEq.(5)assumesaconstanttotalhead,whereasEq.(4)givesvaryingtotalheadalongthetunnelcircumference.Byconsideringthesetwodifferentboundaryconditionsalongthetunnelcircumference,twodifferentsolutionsforthesteady-stategroundwaterrinflowintoadrainedcirculartunnelarere-derivedinthenext.

3.Analyticalsolutions

mapping

Thegroundsurfaceandthetunnelcircumferenceinthez-planecanbemappedconformallyontotwocirclesofradius1andα,inthetransformedζ-planebytheanalyticfunction(Fig.2)(VerruijtandBooker,2000)

(6)

whereA=h(1-α2)/(1+α2),histhetunneldepthandαisaparameterdefinedas

or

(7)

Then,Eq.

(1)canberewrittenintermsofcoordinateξ-η

(8)

Byconsideringtheboundaryconditions,thesolutionforthetotalheadonacirclewithradiusρintheζ-planecanbeexpressedas

(9)

whereC1,C2,C3andC4areconstantstobedeterminedfromtheboundaryconditionsatthegroundsurfaceandalongthetunnelcircumference.

surfaceboundarycondition

TheconstantC1canbeobtainedbyconsideringtheboundaryconditionatthegroundsurfacewithρ=1intheζ-plane,

(10)

Fig.2.Planeofconformalmapping.

tunnelboundarycondition

Theotherconstantscanbeobtainedbyconsideringtwodifferenttunnelboundaryconditions.

zerowaterpressure.

Byconsideringζ=aexp(ίθ)intheζ-plane,theelevationheadaroundthetunnelcircumferencecanbeexpressedas

(11a)

Orintheseriesform(Verruijt,1996)

(11b)

AndthenapplyingtheboundaryconditionofEq.(4)gives

(12)

So,

(13)

NotethatEq.(13)isthesameformasEq.(4.1)inElTani(2003)forthecaseofH=0.

(2)Case2:

constanttotalhead,ha.

ApplyingtheboundaryconditionofEq.(5)gives

(14)

(15)

solutionforgroundwaterinflow

Thesolutionforthegroundwaterinflow,whichisthevolumeofwaterperunittunnellength,intoadrainedcirculartunnelcanbeobtainedfortwodifferentcasesas

(16)

(17)

NotethatEq.(16)isthesamesolutionasElTani(2003)withH=0,whereasEq.(17)isthesamesolutionasKolymbasandWagner(2007).ThereisacleardifferencebetweenEqs.(16)and(17):

A(=h(1-α2)/(1+α2))inEq.(16)andhainEq.(17)duetothedifferentboundaryconditionsalongthetunnelcircumference.

Itisalsonotedthatthesolutions(16)and(17)areusedforthecaseinwhichthewatertableisabovethegroundsurface.Ifthegroundwatertableisbelowthegroundsurface,thegroundwaterlevelisusedastheelevationreferencedatum.Thesolutions(16)and(17)shouldbeusedwithH=0andh=thegroundwaterdepth(nottunneldepth).

4.Comparisonwithapproximatesolutions

FromtheexactsolutionEq.(17),thepreviousapproximatesolutionscanbeobtainedwiththeassumptionthatthetotalheadeverywhereatthetunnelcircumferenceisequaltothetotalheadat(x=±

r,y=-h),i.e.ha=-h(Lei,1999;

ElTani,2003).

(1)Approximatesolutionbyassumingha=-h.

Bysimplyassumingha=-handH=0,Eq.(17)canbesimplifiedas

(18)

WheresubscriptAmeansapproximatesolution.Eq.(18)wasindicatedasthesolutionbyRat,Schleiss,LeiinTable1ofElTani(2003).

(2)Approximatesolutioninthecaseofh﹥﹥r(deeptunnel)

Forh﹥﹥r,wehaveh+

andhenceEq.(18)canbefurthersimplifiedas

(19)

Eq.(19)wasindicatedasthesolutionbyMuskat,Goodmanetal.inTable1ofElTani(2003).

inwaterinflowpredictions

Inordertoinvestigatethedifferenceinwaterinflowpredictionsamongtheexactandapproximatesolutionsandtherangeofapplicabilityofapproximatesolutions,therelativeerror,previouslyshowninFig.3ofElTani(2003),areobtainedagainfrom

δ1andδ2showthedifferencesbetweenQ1(Case1)andQA1,QA2(approximatesolutionsofCase2)respectively.Here,H=0isused,andsothiscaseisthatthegroundwaterlevelisat/belowthegroundsurface.

Fig.3.Diffierenceamongsolutions(E1Tani,2003)

FromFig.3,δ1andδ2indicatethattheapproximatesolutions,QA1andQA2,overestimatetheinflowratebyabout10–15%whenr/h=0.5.InterestinglytheoverestimationbytheapproximatesolutionQA1increasesdrasticallyasr/h

1.Thismaybecausetheterm

and

asr/h

1.Thus,theapproximatesolutionQA2seemstogivebetterpredictionofgroundwaterinflowthanQA1.Since,theterm

asr/h

1,Q1givesstableresults.IfH≠0,howevertheterm

couldcauseinstabilityofQ1asr/h

1.Thiseffectisinvestigatedinthenext.

ofHintheunderwatertunnel

TheeffectofHonthewaterinflowpredictionintheunderwatertunnelisinvestigatedbyusingtheapproximateandexactsolutions.Fig.4showstheresultsofwaterinflowwithrespecttor/hwithdifferentb(=H/h).TheinflowisobtainedfromEq.(16)forQ1orEq.(19)forQA2consideringha=-handh﹥﹥r.

ThesolidlinerepresentstheresultsforQ1,whereasdottedlineindicatestheresultforQA2.ItcanbeseenfromFig.4thatthewaterinflowincreaseswithincreasingb.Forb=0.5and1,theinflowratebyQ1increasesgreatlyasr/h

1,asexpected.TheapproximatesolutionQA2slightlyoverestimat

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2