31第三章磁场复习导学案Word文档下载推荐.docx

上传人:b****6 文档编号:8598277 上传时间:2023-05-12 格式:DOCX 页数:19 大小:187.37KB
下载 相关 举报
31第三章磁场复习导学案Word文档下载推荐.docx_第1页
第1页 / 共19页
31第三章磁场复习导学案Word文档下载推荐.docx_第2页
第2页 / 共19页
31第三章磁场复习导学案Word文档下载推荐.docx_第3页
第3页 / 共19页
31第三章磁场复习导学案Word文档下载推荐.docx_第4页
第4页 / 共19页
31第三章磁场复习导学案Word文档下载推荐.docx_第5页
第5页 / 共19页
31第三章磁场复习导学案Word文档下载推荐.docx_第6页
第6页 / 共19页
31第三章磁场复习导学案Word文档下载推荐.docx_第7页
第7页 / 共19页
31第三章磁场复习导学案Word文档下载推荐.docx_第8页
第8页 / 共19页
31第三章磁场复习导学案Word文档下载推荐.docx_第9页
第9页 / 共19页
31第三章磁场复习导学案Word文档下载推荐.docx_第10页
第10页 / 共19页
31第三章磁场复习导学案Word文档下载推荐.docx_第11页
第11页 / 共19页
31第三章磁场复习导学案Word文档下载推荐.docx_第12页
第12页 / 共19页
31第三章磁场复习导学案Word文档下载推荐.docx_第13页
第13页 / 共19页
31第三章磁场复习导学案Word文档下载推荐.docx_第14页
第14页 / 共19页
31第三章磁场复习导学案Word文档下载推荐.docx_第15页
第15页 / 共19页
31第三章磁场复习导学案Word文档下载推荐.docx_第16页
第16页 / 共19页
31第三章磁场复习导学案Word文档下载推荐.docx_第17页
第17页 / 共19页
31第三章磁场复习导学案Word文档下载推荐.docx_第18页
第18页 / 共19页
31第三章磁场复习导学案Word文档下载推荐.docx_第19页
第19页 / 共19页
亲,该文档总共19页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

31第三章磁场复习导学案Word文档下载推荐.docx

《31第三章磁场复习导学案Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《31第三章磁场复习导学案Word文档下载推荐.docx(19页珍藏版)》请在冰点文库上搜索。

31第三章磁场复习导学案Word文档下载推荐.docx

B=F/Il(电流方向与磁感线垂直时的公式).

③方向:

左手定则:

是磁感线的切线方向;

是小磁针N极受力方向;

是小磁针静止时N极的指向.不是导线受力方向;

不是正电荷受力方向;

也不是电流方向.

④单位:

牛/安米,也叫特斯拉,国际单位制单位符号T.

⑤B定:

就是说磁场中某一点定了,则该处磁感应强度的大小与方向都是定值.

⑥匀强磁场的磁感应强度处处相等.

⑦磁场的叠加:

空间某点如果同时存在两个以上电流或磁体激发的磁场,则该点的磁感应强度是各电流或磁体在该点激发的磁场的磁感应强度的矢量和,满足矢量运算法则.

【例2】如图所示,正四棱柱abed一a'

b'

c'

d'

的中心轴线00'

处有一无限长的载流直导线,对该电流的磁场,下列说法中正确的是

A.同一条侧棱上各点的磁感应强度都相等

B.四条侧棱上的磁感应强度都相同

C.在直线ab上,从a到b,磁感应强度是先增大后减小

D.棱柱内任一点的磁感应强度比棱柱侧面上所有点都大

【例3】如图所示,两根导线a、b中电流强度相同.方向如图所示,则离两导线等距离的P点,磁场方向如何?

【例4】六根导线互相绝缘,所通电流都是I,排成如图10一5所示的形状,区域A、B、C、D均为相等的正方形,则平均磁感应强度最大的区域是哪些区域?

该区域的磁场方向如何?

【例5】一小段通电直导线长1cm,电流强度为5A,把它放入磁场中某点时所受磁场力大小为0.1N,则该点的磁感强度为()

A.B=2T;

B.B≥2T;

C、B≤2T;

D.以上三种情况均有可能

【例6】如图所示,一根通电直导线放在磁感应强度B=1T的匀强磁场中,在以导线为圆心,半径为r的圆周上有a,b,c,d四个点,若a点的实际磁感应强度为0,则下列说法中正确的是

A.直导线中电流方向是垂直纸面向里的

B.C点的实际磁感应强度也为0

C.d点实际磁感应强度为

,方向斜向下,与B夹角为450

D.以上均不正确

四、磁通量与磁通密度

1.磁通量Φ:

穿过某一面积磁力线条数,是标量.

2.磁通密度B:

垂直磁场方向穿过单位面积磁力线条数,即磁感应强度,是矢量.

3.二者关系:

B=Φ/S(当B与面垂直时),Φ=BScosθ,Scosθ为面积垂直于B方向上的投影,θ是B与S法线的夹角.

【例7】如图所示,A为通电线圈,电流方向如图所示,B、C为与A在同一平面内的两同心圆,φB、φC分别为通过两圆面的磁通量的大小,下述判断中正确的是()

A.穿过两圆面的磁通方向是垂直纸面向外

B.穿过两圆面的磁通方向是垂直纸面向里

C.φB>φCD.φB<φC

规律方法

1.磁场基本性质的应用

【例8】从太阳或其他星体上放射出的宇宙射线中含有高能带电粒子,若到达地球,对地球上的生命将带来危害.对于地磁场对宇宙射线有无阻挡作用的下列说法中,正确的是

A.地磁场对直射地球的宇宙射线的阻挡作用在南北两极最强,赤道附近最弱

B.地磁场对直射地球的宇宙射线的阻挡作用在赤道附近最强,南北两极最弱

C.地磁场对宇宙射线的阻挡作用各处相同

D.地磁场对宇宙射线无阻挡作用

【例9】超导是当今高科技的热点之一,当一块磁体靠近超导体时,超导体中会产生强大的电流,对磁体有排斥作用,这种排斥力可使磁体悬浮在空中,磁悬浮列车就采用了这项技术,磁体悬浮的原理是

①超导体电流的磁场方向与磁体的磁场方向相同.

②超导体电流的磁场方向与磁体的磁场方向相反.

③超导体使磁体处于失重状态.

④超导体对磁体的磁力与磁体的重力相平衡.

A.①③B.①④C.②③D.②④

【例10】磁场具有能量,磁场中单位体积所具有的能量叫做能量密度,其值为B2/2μ,式中B是感应强度,μ是磁导率,在空气中μ为一已知常数.为了近似测得条形磁铁磁极端面附近的磁感应强度B,一学生用一根端面面积为A的条形磁铁吸住一相同面积的铁片P,再用力将铁片与磁铁拉开一段微小距离△L,并测出拉力F,如图所示.因为F所做的功等于间隙中磁场的能量,所以由此可得磁感应强度B与F、A之间的关系为B=

磁场对电流的作用

基础知识一、安培力

1.安培力:

通电导线在磁场中受到的作用力叫做安培力.

说明:

磁场对通电导线中定向移动的电荷有力的作用,磁场对这些定向移动电荷作用力的宏观表现即为安培力.

2.安培力的计算公式:

F=BILsinθ(θ是I与B的夹角);

通电导线与磁场方向垂直时,即θ=900,此时安培力有最大值;

通电导线与磁场方向平行时,即θ=00,此时安培力有最小值,F=0N;

00<B<900时,安培力F介于0和最大值之间.

3.安培力公式的适用条件:

①公式F=BIL一般适用于匀强磁场中I⊥B的情况,对于非匀强磁场只是近似适用(如对电流元),但对某些特殊情况仍适用.

如图所示,电流I1//I2,如I1在I2处磁场的磁感应强度为B,则I1对I2的安培力F=BI2L,方向向左,同理I2对I1,安培力向右,即同向电流相吸,异向电流相斥.

②根据力的相互作用原理,如果是磁体对通电导体有力的作用,则通电导体对磁体有反作用力.两根通电导线间的磁场力也遵循牛顿第三定律.

二、左手定则

1.用左手定则判定安培力方向的方法:

伸开左手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,并使四指指向电流方向,这时手掌所在平面跟磁感线和导线所在平面垂直,大拇指所指的方向就是通电导线所受安培力的方向.

2.安培力F的方向既与磁场方向垂直,又与通电导线垂直,即F跟BI所在的面垂直.但B与I的方向不一定垂直.

3.安培力F、磁感应强度B、电流1三者的关系

①已知I,B的方向,可惟一确定F的方向;

②已知F、B的方向,且导线的位置确定时,可惟一确定I的方向;

③已知F,1的方向时,磁感应强度B的方向不能惟一确定.

4.由于B,I,F的方向关系常是在三维的立体空间,所以求解本部分问题时,应具有较好的空间想象力,要善于把立体图画变成易于分析的平面图,即画成俯视图,剖视图,侧视图等.

【例1】如图所示,一条形磁铁放在水平桌面上在其左上方固定一根与磁铁垂直的长直导线,当导线通以如图所示方向电流时()

A.磁铁对桌面的压力减小,且受到向左的摩擦力作用

B.磁铁对桌面的压力减小,且受到向右的摩擦力作用

C.磁铁对桌面的压力增大,且受到向左的摩擦力作用

D.磁铁对桌面的压力增大,且受到向右的摩擦力作用

【例2】.如图在条形磁铁N极处悬挂一个线圈,当线圈中通有逆时针方向的电流时,线圈将向哪个方向偏转?

【例3】电视机显象管的偏转线圈示意图如右,即时电流方向如图所示。

该时刻由里向外射出的电子流将向哪个方向偏转?

规律方法1。

安培力的性质和规律;

①公式F=BIL中L为导线的有效长度,即导线两端点所连直线的长度,相应的电流方向沿L由始端流向末端.如图所示,甲中:

,乙中:

L/=d(直径)=2R(半圆环且半径为R)

②安培力的作用点为磁场中通电导体的几何中心;

③安培力做功:

做功的结果将电能转化成其它形式的能.

【例4】质量为m的通电细杆ab置于倾角为θ的平行导轨上,导轨宽度为d,杆ab与导轨间的摩擦因数为μ.有电流时aB恰好在导轨上静止,如图所示,如图10—19所示是沿ba方向观察时的四个平面图,标出了四种不同的匀强磁场方向,其中杆与导轨间摩擦力可能为零的是()

2、安培力作用下物体的运动方向的判断

(1)电流元法:

即把整段电流等效为多段直线电流元,先用左手定则判断出每小段电流元所受安培力的方向,从而判断整段电流所受合力方向,最后确定运动方向.

(2)特殊位置法:

把电流或磁铁转到一个便于分析的特殊位置后再判断安培力方向,从而确定运动方向.

(3)等效法:

环形电流和通电螺线管都可以等效成条形磁铁,条形磁铁也可等效成环形电流或通电螺线管,通电螺线管也可以等效成很多匝的环形电流来分析.

(4)利用结论法:

①两电流相互平行时无转动趋势,同向电流相互吸引,反向电流相互排斥;

②两电流不平行时,有转动到相互平行且电流方向相同的趋势.

(5)转换研究对象法:

因为电流之间,电流与磁体之间相互作用满足牛顿第三定律,这样,定性分析磁体在电流磁场作用下如何运动的问题,可先分析电流在磁体磁场中所受的安培力,然后由牛顿第三定律,再确定磁体所受电流作用力,从而确定磁体所受合力及运动方向.

(6)分析在安培力作用下通电导体运动情况的一般步骤

①画出通电导线所在处的磁感线方向及分布情况

②用左手定则确定各段通电导线所受安培力

③)据初速方向结合牛顿定律确定导体运动情况

(7)磁场对通电线圈的作用:

若线圈面积为S,线圈中的电流强度为I,所在磁场的孩感应强度为B,线圈平面跟磁场的夹角为θ,则线圈所受磁场的力矩为:

M=BIScosθ.

【例5】如图所示,电源电动势E=2V,r=0.5Ω,竖直导轨电阻可略,金属棒的质量m=0.1kg,R=0.5Ω,它与导体轨道的动摩擦因数μ=0.4,有效长度为0.2m,靠在导轨的外面,为使金属棒不下滑,我们施一与纸面夹角为600且与导线垂直向外的磁场,(g=10m/s2)求:

(1)此磁场是斜向上还是斜向下?

(2)B的范围是多少?

【例6】在倾角为θ的斜面上,放置一段通有电流强度为I,长度为L,质量为m的导体棒a,(通电方向垂直纸面向里),如图所示,棒与斜面间动摩擦因数μ<

tanθ.欲使导体棒静止在斜面上,应加匀强磁场,磁场应强度B最小值是多少?

如果要求导体棒a静止在斜面上且对斜面无压力,则所加匀强磁场磁感应强度又如何?

3.安培力的实际应用

【例7】在原于反应堆中抽动液态金属等导电液时.由于不允许传动机械部分与这些流体相接触,常使用一种电磁泵。

图中表示这种电磁泵的结构。

将导管置于磁场中,当电流I穿过导电液体时,这种导电液体即被驱动。

若导管的内截面积为a×

h,磁场区域的宽度为L,磁感强度为B.液态金属穿过磁场区域的电流为I,求驱动所产生的压强差是多大?

【例8】将两碳棒A,B(接电路)插盛有AgNO3溶液的容器中,构成如图电路.假设导轨光滑无电阻,宽为d,在垂直导轨平面方向上有大小为B,方向垂直纸面向外的磁场,若经过时间t后,在容器中收集到nL气体(标况),问此时滑杆C(质量为mC)的速度,写出A,B棒上发生的电极反应式(阿伏加德罗常数N0)

磁场对运动电荷的作用

基础知识一、洛仑兹力

磁场对运动电荷的作用力

1.洛伦兹力的公式:

f=qvBsinθ,θ是V、B之间的夹角.

2.当带电粒子的运动方向与磁场方向互相平行时,F=0

3.当带电粒子的运动方向与磁场方向互相垂直时,f=qvB

4.只有运动电荷在磁场中才有可能受到洛伦兹力作用,静止电荷在磁场中受到的磁场对电荷的作用力一定为0.

二、洛伦兹力的方向

1.洛伦兹力F的方向既垂直于磁场B的方向,又垂直于运动电荷的速度v的方向,即F总是垂直于B和v所在的平面.

2.使用左手定则判定洛伦兹力方向时,伸出左手,让姆指跟四指垂直,且处于同一平面内,让磁感线穿过手心,四指指向正电荷运动方向(当是负电荷时,四指指向与电荷运动方向相反)则姆指所指方向就是该电荷所受洛伦兹力的方向.

三、洛伦兹力与安培力的关系

1.洛伦兹力是单个运动电荷在磁场中受到的力,而安培力是导体中所有定向称动的自由电荷受到的洛伦兹力的宏观表现.

2.洛伦兹力一定不做功,它不改变运动电荷的速度大小;

但安培力却可以做功.

四、带电粒子在匀强磁场中的运动

1.不计重力的带电粒子在匀强磁场中的运动可分三种情况:

一是匀速直线运动;

二是匀速圆周运动;

三是螺旋运动.

2.不计重力的带电粒子在匀强磁场中做匀速圆周运动的轨迹半径r=mv/qB;

其运动周期T=2πm/qB(与速度大小无关).

3.不计重力的带电粒子垂直进入匀强电场和垂直进入匀强磁场时都做曲线运动,但有区别:

带电粒子垂直进入匀强电场,在电场中做匀变速曲线运动(类平抛运动);

垂直进入匀强磁场,则做变加速曲线运动(匀速圆周运动).

【例1】一带电粒子以初速度V0垂直于匀强电场E沿两板中线射入,不计重力,由C点射出时的速度为V,若在两板间加以垂直纸面向里的匀强磁场,粒子仍以V0入射,恰从C关于中线的

对称点D射出,如图所示,则粒子从D点射出的速度为多少?

【例2】如图所示,竖直两平行板P、Q,长为L,两板间电压为U,垂直纸面的匀强磁场的磁感应强度为B,电场和磁场均匀分布在两板空间内,今有带电量为Q,质量为m的带正电的油滴,从某高度处由静止落下,从两板正中央进入两板之间,刚进入时油滴受到的磁场力和电场力相等,此后油滴恰好从P板的下端点处离开两板正对的区域,求

(1)油滴原来静止下落的位置离板上端点的高度h。

(2)油滴离开板间时的速度大小。

【例3】在两块平行金属板A、B中,B板的正中央有一α粒子源,可向各个方向射出速率不同的α粒子,如图所示.若在A、B板中加上UAB=U0的电压后,A板就没有α粒子射到,U0是α粒子不能到达A板的最小电压.若撤去A、B间的电压,为了使α粒子不射到A板,而在A、B之间加上匀强磁场,则匀强磁场的磁感强度B必须符合什么条件(已知α粒子的荷质比m/q=2.l×

10-8kg/C,A、B间的距离d=10cm,电压U0=4.2×

104V)?

规律方法1、带电粒子在磁场中运动的圆心、半径及时间的确定

(1)用几何知识确定圆心并求半径.

因为F方向指向圆心,根据F一定垂直v,画出粒子运动轨迹中任意两点(大多是射入点和出射点)的F或半径方向,其延长线的交点即为圆心,再用几何知识求其半径与弦长的关系.

(2)确定轨迹所对应的圆心角,求运动时间.

先利用圆心角与弦切角的关系,或者是四边形内角和等于3600(或2π)计算出圆心角θ的大小,再由公式t=θT/3600(或θT/2π)可求出运动时间.

(3)注意圆周运动中有关对称的规律.

如从同一边界射入的粒子,从同一边界射出时,速度与边界的夹角相等;

在圆形磁场区域内,沿径向射入的粒子,必沿径向射出.

【例4】如图所示,一束电子(电量为e)以速度v垂直射入磁感应强度为B,宽度为d的匀强磁场中,穿过磁场时速度方向与电子原来入射方向的夹角是300,则电子的质量是,穿过磁场的时间是。

【例5】如图所示,一束电子以大小不同的速率沿图示方向飞入横截面是一正方形的匀强磁场,下列判断正确的是()

A、电子在磁场中运动时间越长,其轨迹线越长

B.电子在磁场中运动时间越长。

其轨迹线所对应的圆心角越大

C.在磁场中运动时间相同的电子,其轨迹线一定重合

D.电子的速率不同,它们在磁场中运动时间一定不相同

【例6】如图所示,半径R=10cm的圆形区域边界跟y轴相切于坐标系原点O。

磁感强度B=0.332T,方向垂直于纸面向里,在O处有一放射源S,可沿纸面向各个方向射出速率均为v=3.2×

106m/s的α粒子.已知α粒子的质量m=6.64×

10-27kg,电量q=3.2×

10-19C.

(1)画出α粒子通过磁场空间做圆周运动的圆心的轨迹.

(2)求出α粒子通过磁场空间的最大偏转角θ.(3)再以过O点并垂直纸面的直线为轴旋转磁场区域,能使穿过磁场区域且偏转角最大的α粒子射到正方向的y轴上,则圆形磁场直径OA至少应转过多大的角度β.

2、洛仑兹力的多解问题

(1)带电粒子电性不确定形成多解.

带电粒子可能带正电荷,也可能带负电荷,在相同的初速度下,正负粒子在磁场中运动轨迹不同,导致双解.

(2)磁场方向不确定形成多解.

若只告知磁感应强度大小,而未说明磁感应强度方向,则应考虑因磁场方向不确定而导致的多解.

(3)临界状态不惟一形成多解.

带电粒子在洛伦兹力作用下飞越有界磁场时,它可能穿过去,也可能偏转1800从入射界面这边反向飞出.另在光滑水平桌面上,一绝缘轻绳拉着一带电小球在匀强磁场中做匀速圆周运动,若绳突然断后,小球可能运动状态也因小球带电电性,绳中有无拉力造成多解.

(4)运动的重复性形成多解.

如带电粒子在部分是电场,部分是磁场空间运动时,往往具有往复性,因而形成多解.

【例7】如图所示,一半径为R的绝缘圆筒中有沿轴线方向的匀强磁场,磁感应强度为B,一质量为m,带电荷量为q的正粒子(不计重力)以速度为v从筒壁的A孔沿半径方向进入筒内,设粒子和筒壁的碰撞无电荷量和能量的损失,那么要使粒子与筒壁连续碰撞,绕筒壁一周后恰好又从A孔射出,问:

(1)磁感应强度B的大小必须满足什么条件?

(2)粒子在筒中运动的时间为多少?

【例8】S为电子源,它只能在如图(l)所示纸面上的3600范围内发射速率相同,质量为m,电量为e的电子,MN是一块竖直挡板,与S的水平距离OS=L,挡板左侧充满垂直纸面向里的匀强磁场,磁感强度为B.

(l)要使S发射的电子能到达挡板,则发射电子的速度至少多大?

(2)若S发射电子的速度为eBL/m时,挡板被电子击中范围多大?

(要求指明S在哪个范围内发射的电子可以击中挡板,并在图中画出能击中挡板距O上下最远的电子的运动轨道)

【例9】M、N、P为很长的平行边界面,M、N与M、P间距分别为L1、L2,其间分别有磁感应强度为B1和B2的匀强磁场区,Ⅰ和Ⅱ磁场方向垂直纸面向里,B1≠B2,有一带正电粒子的电量为q,质量为m,以大小为v的速度垂直边界M及磁场方向射入MN间的磁场区域,讨论粒子初速度v应满足什么条件才可穿过两个磁场区域(不计粒子的重力)。

专题:

带电粒子在复合场中的运动

基础知识一、复合场的分类:

1、复合场:

即电场与磁场有明显的界线,带电粒子分别在两个区域内做两种不同的运动,即分段运动,该类问题运动过程较为复杂,但对于每一段运动又较为清晰易辨,往往这类问题的关键在于分段运动的连接点时的速度,具有承上启下的作用.

2、叠加场:

即在同一区域内同时有电场和磁场,些类问题看似简单,受力不复杂,但仔细分析其运动往往比较难以把握。

二、带电粒子在复合场电运动的基本分析

1.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.

2.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动.

3.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动.

4.当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理.

三、电场力和洛伦兹力的比较

1.在电场中的电荷,不管其运动与否,均受到电场力的作用;

而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛伦兹力的作用.

2.电场力的大小F=Eq,与电荷的运动的速度无关;

而洛伦兹力的大小f=Bqvsinα,与电荷运动的速度大小和方向均有关.

3.电场力的方向与电场的方向或相同、或相反;

而洛伦兹力的方向始终既和磁场垂直,又和速度方向垂直.

4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛伦兹力只能改变电荷运动的速度方向,不能改变速度大小

5.电场力可以对电荷做功,能改变电荷的动能;

洛伦兹力不能对电荷做功,不能改变电荷的动能.

6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;

匀强磁场中在洛伦兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧.

四、对于重力的考虑

重力考虑与否分三种情况.

(1)对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;

而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力.

(2)在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单.(3)对未知名的带电粒子其重力是否忽略又没有明确时,可采用假设法判断,假设重力计或者不计,结合题给条件得出的结论若与题意相符则假设正确,否则假设错误.

五、复合场中的特殊物理模型

1.粒子速度选择器

如图所示,粒子经加速电场后得到一定的速度v0,进入正交的电场和磁场,受到的电场力与洛伦兹力方向相反,若使粒子沿直线从右边孔中出去,则有qv0B=qE,v0=E/B,若v=v0=E/B,粒子做直线运动,与粒子电量、电性、质量无关

若v<E/B,电场力大,粒子向电场力方向偏,电场力做正功,动能增加.

若v>E/B,洛伦兹力大,粒子向磁场力方向偏,电场力做负功,动能减少.

2.磁流体发电机

如图所示,由燃烧室O燃烧电离成的正、负离子(等离子体)以高速。

喷入偏转磁场B中.在洛伦兹力作用下,正、负离子分别向上、下极板偏转、积累,从而在板间形成一个向下的电场.两板间形成一定的电势差.当qvB=qU/d时电势差稳定U=dvB,这就相当于一个可以对外供电的电源.

3.电磁流量计.

电磁流量计原理可解释为:

如图所示,一圆形导管直径为d,用非磁性材料制成,其中有可以导电的液体向左流动.导电液体中的自由电荷(正负离子)在洛伦兹力作用下纵向偏转,a,b间出现电势差.当自由电荷所受电场力和洛伦兹力平衡时,a、b间的电势差就保持稳定.

由Bqv=Eq=Uq/d,可得v=U/Bd.流量Q=Sv=πUd/4B

4.质谱仪

如图所示

组成:

离子源O,加速场U,速度选择器(E,B),偏转场B2,胶片.

原理:

加速场中qU=½

mv2

选择器中:

v=E/B1

偏转场中:

d=2r,qvB2=mv2/r

比荷:

质量

作用:

主要用于测量粒子的质量、比荷、研究同位素.

5.回旋加速器

两个D形盒,大型电磁铁,高频振荡交变电压,两缝间可形成电压U

电场用来对粒子(质子、氛核,a粒子等)加速,磁场用来使粒子回旋从而能反复加速.高能粒子是研究微观物理的重要手段.

要求:

粒子在磁场中做圆周运动的周期等于交变电源的变化周期.

关于回旋加速器的几个问题:

(1)回旋加速器中的D形盒,它的作用是静电屏蔽,使带电粒子在圆周运动过程中只处在磁场中而不受电场的干扰,以保证粒子做匀速圆周运动‘

(2)回旋加速器中所加交变电压的频率f,与带电粒子做匀速圆周运动的频率相等:

(3)回旋加速器最后使粒子得到的能量,可由公式

来计算,在粒子电量,、质量m和磁感应强度B一定

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > PPT模板 > 商务科技

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2