游戏手柄外壳注塑模具设计.docx
《游戏手柄外壳注塑模具设计.docx》由会员分享,可在线阅读,更多相关《游戏手柄外壳注塑模具设计.docx(55页珍藏版)》请在冰点文库上搜索。
游戏手柄外壳注塑模具设计
游戏手柄外壳注塑模具设计
游戏手柄外壳注塑模具设计
题目游戏手柄外壳注塑模具设计
院系XXX
专业XXXXXXXXXXXXX
姓名XXXXXXX
年级XXXXXXXXXXX
指导教师XXXXXXX
二零x年x月
前言
随着中国当前的经济形势的日趋好转,在〝实现中华民族的伟大复兴〞口号的倡引下,中国的制造业也日趋蓬勃进展;而模具技术已成为衡量一个国家制造业水平的重要标志之一,模具工业能促进工业产品生产的进展和质量提高,并能获得极大的经济效益,因而引起了各国的高度重视和赞扬。
在日本,模具被誉为〝进入富裕的原动力〞,德国那么冠之为〝金属加工业的帝王〞,在罗马尼亚那么更为直截了当:
〝模具确实是黄金〞。
可见模具工业在国民经济中重要地位。
我国对模具工业的进展也十分重视,早在1989年3月颁布的«关于当前国家产业政策要点的决定»中,就把模具技术的进展作为机械行业的首要任务。
近年来,塑料模具的产量和水平进展十分迅速,高效率、自动化、大型、长寿命、周密模具在模具产量中所战比例越来越大。
注塑成型模具确实是将塑料先加在注塑机的加热料筒内,塑料受热熔化后,在注塑机的螺杆或活塞的推动下,通过喷嘴和模具的浇注系统进入模具型腔内,塑料在其中固化成型。
本次毕业设计的要紧任务是面板注塑模具的设计。
也确实是设计一副注塑模具来生产面板塑件产品,以实现自动化提高产量。
针对面板的具体结构,通过此次设计,使我对点浇口双分型面模具的设计有了较深的认识。
同时,在设计过程中,通过查阅大量资料、手册、标准、期刊等,结合教材上的知识也对注塑模具的组成结构〔成型零部件、浇注系统、导向部分、推出机构、排气系统、模温调剂系统〕有了系统的认识,拓宽了视野,丰富了知识,为今后独立完成模具设计积存了一定的体会。
前言
第1章绪论
1.1注射成形差不多过程
注射成形是现在成形热塑性塑件的要紧方法,因此应用范畴专门广。
所使用的成形机称为注射机。
注射成形是把塑料原料〔一样为通过造粒、染色、加入添加剂等处理后的颗粒料〕放入料筒中,通过加热融解,使之成为高粘度的流体——称为〝溶体〞,容柱塞或螺杆作为加压工具,使溶体通过喷嘴以较高的压力〔约为25~80Mpa〕注入模具的型腔中,通过冷却、凝固时期,而后从模具中脱出,成为塑料制品。
注射成形的全过程能够分为:
(1)塑化过程现代的注射机差不多上是采纳螺杆式的塑化设备。
塑料原料〔称为〝物料〞〕自送料斗以定容方式送入料筒。
通过料筒外的电加热和料筒内的螺杆旋转的摩擦热使物料熔化,达到一定的温度后即开始注射。
注射动作是由螺杆的推进完成的。
(2)充模过程熔体自注射机的喷嘴喷出后,进入模具的形腔,把形腔内的空气排除,并充满形腔,然后升压到一定的压力,使熔体的密度增加,充实形腔的各部位。
(3)
冷却凝固过程热塑性塑料的注射成形过程是热交换的过程。
即:
塑化注射充模固化成形
加热〔理论上绝热〕散热
热交换成效的优劣,觉得塑件的质量——外表面质量和内在的质量。
因此,模具设计对热交换也要做充分的考虑。
现代的设计方法中也采纳了运算机。
(4)脱模过程塑件在型腔内固化后,必须用机械的方式把它从形腔中取出。
那个动作要由〝脱模机构〞来完成。
不合理的脱模机构对塑件的质量有专门大的阻碍;但塑件的几何形状是千变万化的,因此必定采纳最有效的和最适当的脱模方式。
由〔1〕到〔4〕形成了一个循环。
每一次循环,就完成一次成形——一个乃至数十个塑件。
1.2注射模的差不多结构
注射模的差不多结构依使用的目的而不同,大致上能够作如图1-1所示的分类:
单腔二板式结构
二板式结构
多腔二板式结构
一般模具单腔三板式结构
三板式结构
多腔三板式结构
滑动型心式结构
瓣合式结构
专门模具脱螺纹结构
多层结构
图1-1注塑模差不多结构
第2章游戏手柄外壳造型设计
2.1游戏手柄外壳的选料及其性能
选用热塑性塑料ABS作为游戏手柄外壳的材料。
热塑性塑料是在特定的温度的范畴内能反复加热软化和冷却硬化的塑料。
ABS是acrylonitritle-butadiene-styrenecopolymer的缩写,中文名是丙烯腈-丁二烯-苯乙烯共聚物。
ABS能够依照要求通过改变单体的含量进行调整。
当丙烯腈增加时,塑料的耐热、耐蚀性和表面硬度可改善;丁二烯可提高弹性和韧性;苯乙烯可改善电性能和成形能力。
近年来ABS塑料在汽车内的应用进展专门快,如作档泥板、扶手、热空气调剂导管,以及小轿车车身等。
阻燃级的ABS树脂那么用于电子运算机的壳体,操纵台、电信、光盘音响设备、彩电的机壳等。
成型性能:
无定性料,流淌性中等,吸湿大,必须充分干燥,表面要求光泽的塑件须长时刻预热干燥。
宜取高料温、高模温,但料温过高易分解〔分解温度为≥250℃〕。
对精度较高的塑件,模温宜取50~60℃,对光泽、耐热塑件,模温宜取60~80℃。
综合性能较好,冲击强度较高,化学稳固性、电性能良好。
与372有机玻璃的熔接性良好,制成双色塑件,且可表面镀铬。
ABS的要紧技术指标见表2-1所示。
表2-1ABS的要紧技术指标
密度
1.02~1.16
比容
0.86~0.98
吸水率%
0.2~0.4
收缩率%
0.4~0.7
熔点℃
130~160
弯曲强度MPa
90
抗拉屈服强度Mpa
50
拉伸弹性模量MPa
体积电阻率
硬度HB
9.7
热变形温度℃
0.45MPa
130~160
冲击强度
无缺口
261
1.82MPa
90~108
缺口
11
2.2游戏手柄外壳注射成型工艺过程
游戏手柄外壳注射成形工艺过程如图2-1所示:
注射装置预备装料
预烘干装入料斗预塑化注射装置预备注射
清理嵌件、预热
清理模具、涂脱模剂放入嵌件合模注射保压
脱模冷却
塑件送下工序
图2-1注射成形工艺
注射成形工艺参数见表2-2所示。
表2-2注射成形工艺
注射机类型
预热和干燥
料筒温度〔℃〕
喷嘴温度〔℃〕
温度〔℃〕
时刻〔h〕
后段
中段
前段
螺杆式
80~95
4~5
150~170
165~180
180~200
170~180
模具温度〔℃〕
注射压力〔Mpa〕
成形时刻〔s〕
50~80
60~100
高压时刻
保压时刻
冷却时刻
成形时刻
0~5
15~30
15~30
40~70
螺杆转速〔r/min〕
后处理
方法
温度〔℃〕
时刻〔h〕
30~60
红外线灯、烘箱
70
2~4
2.3游戏手柄外壳的结构分析
下面确定游戏手柄外壳的各项技术参数:
1〕尺寸大小和精度游戏手柄外壳的尺寸大小依照水瓶的大小即可。
游戏手柄外壳壁厚的厚度不宜过大或过小。
假如壁厚太小,那么游戏手柄外壳的强度、刚度不够,同时给制造带来困难。
假如壁厚太大,不仅造成材料白费,而且容易产动气泡、缩孔等缺陷,同时因冷却时刻过长而降低生产率,因此游戏手柄外壳壁厚取1.5mm。
塑件的尺寸精度要紧取决于塑料收缩率的波动和模具制造误差,由于我们要设计的零件的工作环境对精度要求不高,加之选用的塑料ABS举荐精度等级为3、4、5级,因此只要求游戏手柄外壳能与剃须刀的其它零件能正常装配即可,因此手机外壳选用4级精度。
2〕壁厚和圆角塑件壁厚力求各处平均,以免产生不平均收缩等成形缺陷。
塑件转角处一样采纳圆角过渡,其半径为塑件壁厚的1/3以上,最小不宜小于0.5mm。
,转角处的半径见附录«零件工作图»,即03号图纸。
零件图区域分析如图2-2所示。
图2-2零件图区域分析
3〕加强肋为了保证游戏手柄外壳的强度和刚度而不使游戏手柄外壳的壁厚过大,在游戏手柄外壳的适当位置设置了加强肋。
4〕孔严格意义上讲塑件上的通孔和盲孔通常用单独型芯或分段型芯来成形,关于易弯曲变形的型芯,须附设支承住。
然而本次设计中,考虑到生产成本的尽量缩小,该空孔的高度不高,以及我们需要的孔在工艺上要求不高,我们采纳分型面直截了当成形法。
2.4游戏手柄外壳造型设计过程
在设计游戏手柄外壳之前,第一看看所需要设计的游戏手柄外壳的具体形状,以便在接下来的设计中能快速、准确的设计出游戏手柄外壳。
需要设计的游戏手柄外壳的具体形状如图2-3所示:
图2-3手柄外壳的具体形状
第3章成型零件与浇注系统设计
注射模的一般浇注系统由主浇道、分浇道、浇口、冷料穴四部分组成。
主浇道:
从注射机的喷嘴与模具接触的部分到分浇道为止的一段流道。
分浇道:
从主浇道的末端到浇口为止的一段流道。
浇口:
从分流道的末端到模具型腔为止的一段狭窄的浇道。
冷料穴:
一样设在主浇道的对面,有时也设在分浇道的末端。
3.1.1主浇道的设计
主浇道是一端与注射机喷嘴相接触,另一端与分流道相连的一段带有锥度的流淌通道。
主流道小端尺寸为直径为5mm。
主流道小端入口处与注射机喷嘴反复接触,属易损件,对材料要求较严,因而模具主流道部分常设计成可拆卸更换的主流道衬套形式,俗称浇口套,以便有效的选用优质钢材单独进行加工和热处理。
本设计中浇口套由于与定位圈有配合需求,而且注射机喷嘴球半径12,遵循注射机球半径小于等于浇口套球半径的国标要求,浇口套的规格有S15,S20等几种。
由于注射机的喷嘴半径为S12,因此为浇口套取S15。
主流道的形式见附录«模具装配图»,即04号图纸。
主流道浇口套固定配合见图3-1所示。
图3-1主流道浇口套固定配合
3.1.2分浇道的设计
在多型腔或单型腔多浇口〔塑件尺寸大〕时应设置分流道,分流道是指主流道末端与浇口之间这一段塑料熔体的流淌通道。
它是浇注系统中熔融状态的塑料由主流道流入型腔前,通过截面积的变化及流向变换以获得平稳流态的过渡段。
因此分流道设计应满足良好的压力传递和保持理想的充填状态,并在流淌过程中压力缺失尽可能小,能将塑料熔体均衡地分配到各个型腔。
分流道的设计应尽量使比面积小,热量缺失少,摩擦阻力小。
常用分流道的截面形状及尺寸参见«模具设计与制造简明手册»表2-49。
在考虑分流道设计时,由于其水平高度差不多被主流道位置确定,因此,我们只要设计分流道的布置形式和截面形状即可。
考虑到圆形截面的分流道在注射过程中对塑料流淌的阻力最小,流淌效率最高,因此我们选用圆形截面的分流道,直径为3mm。
由于我们所设计的模具是一腔四穴的形式,因此在主浇道分流后,设计了四根分浇道。
如此设计的优点是塑料在填充过程中较平均和平稳,幸免显现冷隔现象,有利于保证成形零件的成形质量。
由于分流道中与模具接触的外层塑料迅速冷却,只有中心部位的塑料熔体的流淌状态较为理想,因面分流道的内表面粗糙度Ra并不要求专门低,一样取1.6μm左右既可,如此表面稍不光滑,有助于塑料熔体的外层冷却皮层固定,从而与中心部位的熔体之间产生一定的速度差,以保证熔体流淌时具有适宜的剪切速率和剪切热。
主浇道和分流道布置位置如图3-1所示,其中主流道至各浇口流淌距离相等,保证了塑料在填充过程中同时到达。
3.1.3浇口及冷料穴设计
1、浇口是分流道与型腔的连接通道,它是浇注系统中截面最小的部分。
当熔融的塑料流通过浇口时,流速加快,同时,由于摩擦作用,塑料流的温度升高、粘度降低,流淌性提高,有利于充满型腔。
因此,浇口的表面粗糙度Ra值不大于0.4um。
浇口的大小对塑件是否成型和成型后的质量有专门大的关系。
浇口位置的选择有以下几个原那么:
1〕浇口设置在正对着型腔壁或粗大型心的地点,使高速料流直截了当冲击在型腔壁或型心壁上,从而改变流向,降低流速,平稳的充满型腔,可幸免溶体破裂现象,排除塑件明显的溶接痕。
2〕浇口的位置应开设在塑件截面最厚处,以利于熔体填充材料。
3〕浇口的位置应使熔体流程最短,流向变化最小,能量缺失最小。
4〕浇口的位置应有利于型腔内气体的排出。
5〕幸免塑件产生熔接痕。
6〕防止料流将型心或嵌件挤压变形。
7〕浇口位置应尽量幸免由于高分子定向作用产生的不利阻碍,利用高分子定向作用产生的有利阻碍。
依照以上一些原那么,本设计采纳侧浇口〔如图3-8所示〕,侧浇口又称边缘浇口,国外称之为标准浇口。
侧浇口一样开设在分型面上,塑料熔体于型腔的侧面充模,其截面形状多为矩形狭缝,调整其截面的厚度和宽度能够调剂熔体充模时的剪切速率及浇口封闭时刻。
这种浇口加工容易,修整方便,同时能够依照塑件的形状特点灵活地选择进料位置,因此它是广泛使用的一种浇口形式,普遍使用于中小型塑件的多型腔模具,且对各种塑料的成型适应性均较强;但有浇口痕迹存在,会形成熔接痕、缩孔、气孔等塑件缺陷,且注射压力缺失大,对深型腔塑件排气不便。
浇口的各类形式和尺寸参见«模具设计与制造简明手册»中表2-50~2-60。
2、冷料穴在完成一次注射循环的间隔,考虑到注射机喷嘴和主浇道入口这一小段熔体因辐射散热而低于所要求的塑料熔体的温度,从喷嘴端部到注射机料筒以内约10-25mm的深度有个温度逐步升高的区域,这时才达到正常的塑料熔体温度。
位于这一区域内的塑料的流淌性能及成型性能不佳,假如那个地点温度相对较低的冷料进入型腔,便会产生次品。
为克服这一现象的阻碍,用一个井穴将主流道延长以接收冷料,防止冷料进入浇注系统的流道和型腔,把这一用来容纳注射间隔所产生的冷料的井穴称为冷料穴。
冷料穴的形状见«模具设计与制造简明手册»中表2-62。
冷料穴一样开设在主流道对面的动模板上〔也即塑料流淌的转向处〕,其标称直径与主流道大端直径相同或略大一些,深度约为直径的1-1.5倍,最终要保证冷料的体积小于冷料穴的体积,冷料穴有六种形式,常用的是端部为Z字形和拉料杆的形式,具体要依照塑料性能合理选用。
考虑到后面采纳Z形拉料秆,冷料穴选取相应形式,这种冷料穴常用于热塑性塑料注射模。
冷料穴的形状和尺寸参见附录凸模工作图,即02号图纸。
3.1.4铸模和开模
当型心、型腔和浇注系统都生成后,模具内部就形成了一个完整的流料通道,UG能够沿着那个通道将浇注系统和型腔充满,形成一个独立的模具元件,那个过程我们称只为铸模。
铸模完成后生成的铸模零件如图3-2所示:
图3-2铸模零件
为了能够看清模具内部结构,并检查开模时的干涉情形,UG提供了开模功能。
模具开模后形状如图3-3所示:
图3-3模具开模后形状
3.2.1凹、凸模冷却系统设计
设置冷却装置的目的,要紧是防止塑件在脱模时发生变形,缩短成形周期及提高塑件质量。
凹模的冷却系统采纳开设冷却水孔的方式,冷却水孔的开设原那么如下:
●冷却水孔的数量应尽可能多,直径尽量大。
●各冷却水孔至型腔表面的距离应相等,一样保持在15~20mm范畴内,距离太近那么冷却不易平均,太远那么效率低。
水孔直径一样取8~12mm。
孔距最好为水孔直径的5倍。
●水孔通过镶块时,防止镶套管等漏水。
●冷却管路一样不宜设在型腔内塑料熔接的地点,以免阻碍塑件强度。
●水管接头〔冷却水嘴〕应设在不阻碍操作的一侧。
凹模上的冷却水孔采纳直流式,其中深孔为工艺孔,空口处用螺纹密封,浅孔通过水嘴与水管相连,冷却冷却水孔的直径为8mm。
凹模冷却水通道3D和2D模型分别如图3-4和3-5所示。
图3-4凹模冷却水通道3D图3-5凹模冷却水通道2D
凸模的冷却系统采纳直孔隔板示冷却,如图3-13和图3-14所示,与分型面垂直的管道和底部的横向管道形成冷却回路,同时为了使冷却水沿着冷却回路流淌,在每一个直管道中均设置有隔板。
凸模冷却水通道3D和2D模型分别如图3-6和3-7所示。
`
图3-6凸模冷却水通道3D图3-7凸模冷却水通道2D
第4章模具零件设计
4.1推出系统设计
确定推出系统形式,是确定模架选择的基础。
在此,我们只介绍推杆推出和推件板推出两种机构,其他推出机构的结构型式参见«模具设计与制造简明手册»中第二章第六节的内容。
1.推杆推出推杆推出是一种最简单常用的推出形式。
推出元件制造简便,更换容易,滑动阻力小,推出成效好,其结构型式见«模具设计与制造简明手册»表2-78。
推杆设计要点如下:
●推杆应设在塑件能承力较大的部位,尽量使推出的塑件受力平均,但不宜与型芯或镶件距离过近,以免阻碍凸、凹模强度。
●推杆直径不宜过细,要有足够的强度承担推力,一样取Φ2.5~12mm。
对Φ3mm以下的推杆宜用阶梯式,即推杆下部增粗。
●推杆装配后不应有轴向窜动,其端面应高出型腔或镶件平面0.05~0.1mm。
推杆固定方式见«模具设计与制造简明手册»图2-56。
●塑件浇口处尽量不设推杆,以防该处内应力大而碎裂。
●推杆的布置应躲开冷却水道和侧抽芯,以免推杆和抽芯机构发生干扰。
假如无法躲开侧抽芯,那么应设置先复位机构。
推杆和模体的配合间隙不大于所用塑料的溢边值,常用塑料的溢边值见«模具设计与制造简明手册»表2-79。
ABS的溢边值为0.04mm。
2.推件板推出推件板推出面积大,推力平均,模具不必设复位秆。
但型芯周边形状复杂时,推件板的型孔加工较困难。
常用于推出深腔、薄壁和不承诺有推杆痕迹的塑件,其结构型式见«模具设计与制造简明手册»表2-81。
推件板设计要点如下:
●推件板须淬硬,在推出过程中不得脱开导柱。
●推件板与其他零件的配合一样采纳H7/f7。
采纳有配合斜度的推件板,其配合间隙须小于塑料溢边值。
基于以上缘故,在那个设计中,采纳推杆推出的推出机构。
推件板的结构型式和尺寸见附录模具装配图,即04号图纸。
推杆形状如图4-1所示:
图4-1推杆形状
4.2确定模架
1.模架组合形式
注射模模架的组成零件及名称见«模具设计与制造简明手册»图2-67。
注射模中小型模架的组合型式见«模具设计与制造简明手册»表2-95。
我们选择A2型,如图4-2所示。
图4-2A2型模架
A2型的特点如下:
定模和动模均由两块模板组成。
推杆推出塑件。
依照产品的外形尺寸〔平面投影面积与高度〕,以及产品本身结构〔侧向分型滑块等机构〕能够确定镶件的外
形尺寸,确定好镶件的大小后,可大致确定模架的大小了。
一般塑料制品模具模架与镶件大小的选取,可参考下面的数据如图4-3所示。
图4-3一般塑料制品模具模架
"A"--表示镶件侧边到模板侧边的距离;
"B"--表示定模镶件底部到定模板底面的距离;
"C"--表示动模镶件底部到动模板底面的距离
"D"--表示产品到镶件侧边的距离;
"E"--表示产品最高点到镶件底部的距离;
"H"--表示动模承板的厚度〔当模架为A型时〕;
"X"--表示产品的高度。
凸模模架如图4-4所示,模具装配图如图4-5所示。
产品投影面积如图4-6所示。
图4-4凸模模架
图4-5模具装配图
图4-6产品投影面积
2.模架组合尺寸
注射模中小型模架组合尺寸见«模具设计与制造简明手册»表2-96。
依照成型零件大小,我们选择250×250的A2型模架,其具体尺寸见表4-1所示。
表4-1A2型模架〔mm〕
L
lT
Lt
lM
lm
定模座板
定模板
250
194
210
128
234
25
40
动模板
支承板
垫块
动模座板
导柱直径
复位杆直径
40
40
63
25
16
8
4.3模架各装配零件设计
4.3.1导向零件设计
注射模导柱标准尺寸见«模具设计与制造简明手册»表2-111和2-112。
注射模导套尺寸见«模具设计与制造简明手册»表2-113和2-114。
1.导柱设计在那个设计中,我们选用带头导柱,其尺寸如表4-2所示,
表4-2带头导柱尺寸
d(f7)
d1(k6)
差不多尺寸
极限尺寸
差不多尺寸
极限尺寸
16
-0.016
-0.034
16
+0.012
+0.001
20
6
112
带头导柱外形见图4-7所示。
图4-7带头导柱
2.导套设计本设计导套选用带头导套。
带头导套的尺寸见表4-3,外形见图4-8所示。
表4-3带头导套尺寸
d(H7)
d1(k6)
d2(e7)
差不多尺寸
极限尺寸
差不多尺寸
极限尺寸
差不多尺寸
极限尺寸
16
+0.018
0
24
+0.015
+0.002
24
-0.040
-0.061
R
28
16
6
1
80
图4-8带头导套
4.3.2浇注系统零件设计
1.浇口套设计注射模浇口套的举荐尺寸见«模具设计与制造简明手册»表2-118。
我们选用注射模Ⅱ型浇口套。
其尺寸见表4-4所示,外形见图4-9所示。
表4-4浇口套尺寸
d(k6)
d2(f8)
d3
h
R
d1
L
差不多尺寸
极限尺寸
差不多尺寸
极限尺寸
20
+0.015
+0.002
20
-0.020
-0.053
28
3
15
5
50
图4-9浇口套
2.拉料杆拉料杆的举荐尺寸见«模具设计与制造简明手册»表2-119。
我们选用Ⅰ型拉料杆,其尺寸见表4-5所示,外形见图4-10所示。
表4-5拉料杆尺寸
d(e8)
d1(n6)
D
R
L
差不多尺寸
极限尺寸
差不多尺寸
极限尺寸
6
-0.025
-0.047
10
+0.019
+0.010
10
0.5
120
图4-10拉料杆
4.3.3推出机构零件
1.复位杆复位杆的举荐尺寸见«模具设计与制造简明手册»表2-135。
我们选用的推件板推杆的外形见图4-11所示,尺寸见表4-6所示。
表4-6复位杆尺寸
d〔e7〕
D
H
L
差不多尺寸
极限尺寸
8
-0.013
-0.022
14
5
123
图4-11复位杆
4.3.4定位圈
1.定位圈Ⅰ、Ⅱ型定位圈举荐尺寸见«模具设计与制造简明手册»表2-137,Ⅲ型定位圈举荐尺寸见«模具设计与制造简明手册»表2-138。
我们选用Ⅲ型定位圈,其外形见图4-12所示,尺寸见表4-7所示。
表4-7定位圈尺寸
d
d1
d2
d3
h
c
H
差不多尺寸
极限尺寸
差不多尺寸
极限尺寸
55
-0.20
-0.40
20
+0.033
0
40
7
11
6.5
1
12
图4-12定位圈
4.3.5其他零件
1.水嘴水嘴的举荐尺寸见«模具设计与制造简明手册»表2-150。
我们选用的水嘴的外形见图4-13所示,尺寸见表4-8所示。
表4-8水嘴尺寸
高压胶管直径
D
D1
d2
d3
D
B
〔l1〕
L
16
M16×1.5
8
14
17
22
20
20
40
图4-13水嘴
1、密封隔板密封隔板为自制件,如图4-14所示。
图4-14密封隔