COMSOL BLOGs.docx

上传人:b****0 文档编号:8966260 上传时间:2023-05-16 格式:DOCX 页数:60 大小:3.23MB
下载 相关 举报
COMSOL BLOGs.docx_第1页
第1页 / 共60页
COMSOL BLOGs.docx_第2页
第2页 / 共60页
COMSOL BLOGs.docx_第3页
第3页 / 共60页
COMSOL BLOGs.docx_第4页
第4页 / 共60页
COMSOL BLOGs.docx_第5页
第5页 / 共60页
COMSOL BLOGs.docx_第6页
第6页 / 共60页
COMSOL BLOGs.docx_第7页
第7页 / 共60页
COMSOL BLOGs.docx_第8页
第8页 / 共60页
COMSOL BLOGs.docx_第9页
第9页 / 共60页
COMSOL BLOGs.docx_第10页
第10页 / 共60页
COMSOL BLOGs.docx_第11页
第11页 / 共60页
COMSOL BLOGs.docx_第12页
第12页 / 共60页
COMSOL BLOGs.docx_第13页
第13页 / 共60页
COMSOL BLOGs.docx_第14页
第14页 / 共60页
COMSOL BLOGs.docx_第15页
第15页 / 共60页
COMSOL BLOGs.docx_第16页
第16页 / 共60页
COMSOL BLOGs.docx_第17页
第17页 / 共60页
COMSOL BLOGs.docx_第18页
第18页 / 共60页
COMSOL BLOGs.docx_第19页
第19页 / 共60页
COMSOL BLOGs.docx_第20页
第20页 / 共60页
亲,该文档总共60页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

COMSOL BLOGs.docx

《COMSOL BLOGs.docx》由会员分享,可在线阅读,更多相关《COMSOL BLOGs.docx(60页珍藏版)》请在冰点文库上搜索。

COMSOL BLOGs.docx

COMSOLBLOGs

1YieldSurfacesandPlasticFlowRulesinGeomechanics

FabioBocchi |October16,2014

Inordertoensuresafegeotechnicalbuildingmethods,specificapplicationsrequirecertainfoundationsandstructurereinforcements.Testsarequiteexpensivetocarryout,sosimulationcanbereallyusefulandevenessential.Manynumericalmodelshavebeendevelopedtogiveadeepinsightintosoilbehavior.Here,weintroducethemostwidespreadmodelsforsoilsavailableinCOMSOLMultiphysicsandanalyzeatunnelexcavationexample.

QuickNoteonGeotechnicalEngineering

Thereseemstobeageneraltrendwhenitcomestoconstruction.Offshorestructuresareconstructedindeeperanddeeperwaters;buildingsareconstructedincreasinglyclosetoeachother;offshorewindturbinesaredevelopedindeepwatersfarawayfromthecoasts,whicharelikelytoexperienceextremeloadingconditions.Therefore,inrecentdecades,geotechnicalengineershavedevelopednumericalsimulationstocopewiththisconstructiontrendandensuresafebuildingmethods.

“ParisMetroconstruction03300288-3″.LicensedunderPublicdomainviaWikimediaCommons.

PlasticityandGeomaterials

Materialsforwhichstrainsorstressesarenotreleaseduponunloadingaresaidtobehave plastically.Severalmaterialsbehaveinsuchamanner,includingmetals,soils,rocks,andconcrete,forexample.Thesegiverisetoanelasticbehavioruptoacertainlevelofstress,the yield stress,atwhichplasticdeformationstartstooccur.

Theelastic-plasticbehaviorispath-dependentandthestressdependsonthehistoryofdeformation.Therefore,theplasticitymodelsareusuallywrittenconnectingthe rates ofstress,ratherthanstress,andtheplasticstrain.Themostwidespreadandwell-knownplasticitymodelthroughouttheindustryisbasedonthevonMisesyieldsurfaceforwhichplasticflowisnotalteredbypressure.Therefore,theyieldconditionandtheplasticflowareonlybasedonthedeviatoricpartofthestresstensor.

However,thismodelisnolongervalidforsoilmaterialssincefrictionalanddilatationeffectsneedtobetakenintoaccount.Let’sseehowthiscanbeworkedoutandbrieflyexplainthedifferentsoilplasticitymodelsavailableintheCOMSOLMultiphysics®simulationsoftware.

PlasticityofSoilsandRocks

Formaterialssuchassoilsandrocks,thefrictionalanddilatationaleffectscannotbeneglected.Thiswholeclassofmaterialsiswellknowntobesensitivetopressure,leadingtodifferenttensileandcompressivebehaviors.ThevonMisesmodelpresentedaboveisthusnotsuitableforthesetypesofmaterials.Instead,yieldfunctionshavebeenworkedouttotakeintoaccountthebehavioroffrictionalmaterials.

Let’sillustratethefrictionalbehaviorandplasticflowforthesematerialsbyconsideringtheblockshownhere:

Theblockisloadedasshownbyanormalload 

 andatangentialload 

.Assumingthattheblockrestsonasurfacewithacoefficientofstaticfriction 

accordingtoCoulomb’slaw,themaximumforcethattheblockcanwithstandbeforeslidingisgivenby 

.Therefore,theonsetofslidingoccurswhenthefollowingconditionisreached:

(1)

Thedirectionofslidingishorizontal.Fortangentialloadssuchas 

theblockwillnotslide,butassoonas 

theblockwillslideinthedirectionoftheappliedload 

.The Mohr-Coulomb criterion—thefirstsoilplasticitymodeleverdeveloped—isageneralizationofthisapproachtocontinuousmaterialsandamultiaxialstateofstress.Itisdefinedsuchthatyieldingandevenruptureoccurwhenacriticalconditionthatcombinestheshearstressandthemeannormalstressisreachedonanyplane.Thisconditionisstatedasbelow:

(2)

Here, 

 istheshearstress, 

 isthenormalstress, 

 isthecohesionrepresentingtheshearstrengthunderzeronormalstress,and 

 isthecoefficientofinternalfrictioncomingfromthewell-knownCoulombmodeloffriction.ThisequationrepresentstwostraightlinesintheMohrplane.AstateofstressissafeifallthreeMohr’scirclesliebetweenthoselines,whileitisacriticalstate(onsetofyielding)ifoneofthethreecirclesistangenttothelines.

Mohr-Coulombyieldbehavior.TheMohrcirclesarebasedontheprincipalstresses 

 

and 

.Asyoucansee,oneofthecirclesistangentialtotheyieldsurface,andsotheonsetofyieldingisoccurring.

Accordingtothefigureabove,thestressstateisgivenby 

 and 

.TheyieldcriterionandEquation2canthereforebere-writteninageneralizedformasfollows:

(3)

ItcanevenbeseenasaparticularcaseofamoregeneralfamilyofcriteriabasedonCoulombfrictionandwrittenbyequationsbasedon invariantsofthestresstensor:

(4)

RepresentationoftheMohr-Coulombyieldfunction.

The Mohr-Coulomb criteriondefinesahexagonalpyramidinthespaceofprincipalstresses,whichmakesitstraightforwardforthiscriteriontobetreatedanalytically.But,theconstitutiveequationsaredifficulttohandlefromanumericalpointofviewbecauseofthesharpcorners(forinstance,thenormalofthisyieldsurfaceisundefinedatthecorners).

Inordertoavoidtheissueassociatedwiththesharpcorners,anotheryieldcriterionofthisfamily,the Drucker-Prager yieldcriterion,hasbeendevelopedbymodifyingthevonMisesyieldcriteriontotakeintoaccounttheCoulombfriction,i.e.,incorporateahydrostaticpressuredependency:

(5)

Thisrepresentsasmoothcircularconeintheplaneofprincipalstress,ratherthanahexagonalpyramid.Ifthecoefficients 

 and 

 arechosensuchthattheymatchthecoefficientsinthe Mohr-Coulomb criterion,asfollows:

(6)

the Drucker-Prager yieldsurfacepassesthroughtheinnerorouterapexesoftheMohr-Coulombpyramid,dependingonwhetherthesymbol 

 ispositiveornegative.The plasticflow directionistakenfromtheso-called“plasticpotential”,whichcanbeeitherthesame,associativeplasticity,ordifferent,non-associativeplasticity,thantheonsetofyielding(theyieldfunction).Manydifferentnon-associativeflowrulescanbedeveloped.

UsinganassociativelawfortheDrucker-Pragermodelleadsthevolumetricplasticflowtobenonzero.Therefore,thereisachangeinvolumeundercompression.However,thisiscontradictorytothebehaviorofmanysoilmaterials,particularlygranularmaterials.Instead,anon-associativeflowrulecanbeusedsuchthattheplasticbehaviorisisochoric(volumepreserving)—amuchbetterreflectionoftheplasticbehaviorofgranularmaterials.

RepresentationoftheDrucker-Prageryieldfunction.

Non-AssociativeLawforSoilPlasticityinCOMSOLMultiphysics

Next,Iwillshowyouhowtouseanon-associativelawforsoilplasticityinCOMSOLMultiphysics.Non-associativeplasticlawscanbeusedregardlessoftheplasticitymodelusedinthesoftware.

Ifyou’reusingtheMohr-Coulombmodel,therearebasicallytwodifferentapproachestohandlingnon-associativeplasticity.TheplasticpotentialcaneitherbetakenfromtheDrucker-Pragermodelorbethesameasthe Mohr-Coulomb yieldfunctionbutwithadifferentslopewithrespecttothehydrostaticaxis,i.e.,theangleoffrictionisreplacedbythe dilatationangle(seescreenshotbelow).

Moreover,whenusingtheDrucker-Pragermatchedtoa Mohr-Coulombcriterion,itiseasytoadaptthedilatationangletomatchwiththenon-associativelawthatyouwanttouse.Forinstance,thenon-associativelawpresentedabovecanbeworkedoutbytakingthedilatationanglenull.

Lastbutnotleast,ausefulfeaturecalled ellipticcap hasbeendevelopedtoavoidunphysicalbehaviorofthematerialbeyondacertainlevelofpressure.Indeed,real-lifematerialcannotwithstandinfinitepressureandstilldeformelastically.Therefore,tocopewiththis,wecanusetheellipticcapfeatureavailableinCOMSOLMultiphysics.

SoilPlasticityfeaturesettingswindow.

Let’strytoputintopracticeeverythingwe’velearnedsofarbyanalyzingtheexampleofatunnelexcavation.Thiswillalsobeanopportunitytofigureoutwhattheeffectsofthedifferentfeatureswementionedaboveare.

ExampleofaTunnelExcavation

Thesimulationofatunnelexcavationprocessisespeciallyimportantinpredictingthenecessaryreinforcementsthattheworkersneedtousetoavoidthecollapseoftheconstruction.

Thefollowingmodelaimstosimulatethesoilbehaviorduringatunnelexcavation.Thesurfacesettlement(i.e.,theverticaldisplacementalongthefreegroundsurface)andtheplasticregionarecomputedandcomparedbetweenthedifferentsoilmodelsusedtocarryoutthissimulation.Thegeometrywe’lluseispresentedinthefigurebelow.Tomakeourmodelrealistic,infiniteelementshavebeenusedtoenlargethesoildomain,whilekeepingthecomputationaldomainsmallenoughtogetthesolutioninarelativelyshorttime.

Thegeometryconsistsofasoillayerthatis100metersdeepand100meterswideplus20metersofinfiniteelements.Atunnel10metersindiameterisplaced10metersawayfromthesymmetryaxisand20metersbelowthesurface.

Firstofall,weneedtoaddthein-situstressesinthesoilbeforetheexcavationofthetunnel.Then,wecancomputetheelastoplasticbehavioroncethesoilcorrespondingtothetunnelisremoved.Thein-situstressesmustbeincorporatedinthissecondstep.ThisisfairlystraightforwardtosetupinCOMSOLMultiphysics.

Wecanbeginbyaddingastationarystepwherethein-situstresseswillbecomputed.Then,inasecondstepbutstillwithinthesamestudy,weaddasoilplasticityfeature.Finally,wecomputethesolution.Inordertogetthepre-stressesincorporatedintothesecondstep,weshouldaddanInitialStressandStr

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2