无卤阻燃PP外文Word下载.docx

上传人:b****2 文档编号:964017 上传时间:2023-04-29 格式:DOCX 页数:49 大小:57.14KB
下载 相关 举报
无卤阻燃PP外文Word下载.docx_第1页
第1页 / 共49页
无卤阻燃PP外文Word下载.docx_第2页
第2页 / 共49页
无卤阻燃PP外文Word下载.docx_第3页
第3页 / 共49页
无卤阻燃PP外文Word下载.docx_第4页
第4页 / 共49页
无卤阻燃PP外文Word下载.docx_第5页
第5页 / 共49页
无卤阻燃PP外文Word下载.docx_第6页
第6页 / 共49页
无卤阻燃PP外文Word下载.docx_第7页
第7页 / 共49页
无卤阻燃PP外文Word下载.docx_第8页
第8页 / 共49页
无卤阻燃PP外文Word下载.docx_第9页
第9页 / 共49页
无卤阻燃PP外文Word下载.docx_第10页
第10页 / 共49页
无卤阻燃PP外文Word下载.docx_第11页
第11页 / 共49页
无卤阻燃PP外文Word下载.docx_第12页
第12页 / 共49页
无卤阻燃PP外文Word下载.docx_第13页
第13页 / 共49页
无卤阻燃PP外文Word下载.docx_第14页
第14页 / 共49页
无卤阻燃PP外文Word下载.docx_第15页
第15页 / 共49页
无卤阻燃PP外文Word下载.docx_第16页
第16页 / 共49页
无卤阻燃PP外文Word下载.docx_第17页
第17页 / 共49页
无卤阻燃PP外文Word下载.docx_第18页
第18页 / 共49页
无卤阻燃PP外文Word下载.docx_第19页
第19页 / 共49页
无卤阻燃PP外文Word下载.docx_第20页
第20页 / 共49页
亲,该文档总共49页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

无卤阻燃PP外文Word下载.docx

《无卤阻燃PP外文Word下载.docx》由会员分享,可在线阅读,更多相关《无卤阻燃PP外文Word下载.docx(49页珍藏版)》请在冰点文库上搜索。

无卤阻燃PP外文Word下载.docx

revised26August2003;

accepted5September2003.;

Availableonline24October2003.

Abstract

Flameretardantsforpolypropylene(PP)andtheirpotentialsuitabilityforuseinfibreapplicationsarereviewed.Fiveprincipaltypesofgenericflameretardantsystemsforinclusioninpolypropylenefibreshavebeenidentifiedasphosphorus-containing,halogen-containing,silicon-containing,metalhydrateandoxideandthemorerecentlydevelopednanocompositeflameretardantformulations.

Themosteffectivetodatecomprisehalogen–antimonyandphosphorus–brominecombinations,whichwhilehavinglimitedperformancealsoarefallingenvironmentalpressures.Alternativesarediscussedaswellasmeansofenhancingtheeffectivenessandhenceusefulnessofphosphorus–nitrogenformulationsnormallyusedatconcentrationstoohighforfibreinclusion.Ofspecialinterestisthepotentialforinclusionoffunctionalisednanoclaysandrecentobservationsthatcertainhinderedaminestabilisersareeffectiveatconcentrationsof1%orso.

AuthorKeywords:

Polypropylene;

Flameretardant;

Fibres;

Combustion;

Phosphorus;

Halogen;

Silicon;

Metalhydrate;

Nanoclay;

Nanocomposite

ArticleOutline

1.Introduction

1.1.Thedevelopmentofpolypropylenefires

1.2.Thepropertiesofpolypropylene

2.Thermalandcombustionbehaviour

3.Flameretardantsforpolypropyleneandpolypropylenefibres

3.1.Phosphorus-containingandintumescentflameretardants

3.1.1.Effectofheavymetalions

3.1.2.Effectofsilicon-containingspecies(seealsoSection3.3)

3.2.Halogen-containingflameretardants

3.3.Silicon-containingflameretardants

3.4.Metalhydroxidesandoxides(metalcompounds)

3.5.Nanocomposites

3.6.Othermethods

3.6.1.Graftingandcoating

3.6.2.Hinderedaminelightstabilisers

4.Conclusions

References

1.Introduction

Polypropylenewasthefirstsyntheticstereo-regularpolymertoachieveindustrialimportance[1]anditispresentlythefastestgrowingfibrefortechnicalend-useswherehightensilestrengthcoupledwithlow-costareessentialfeatures;

ithasshownconsistentgrowthofabout5%per 

annumforthelast10years[2].In1999,worldwideconsumptionofpolyolefinfibresexceeded5.5milliontonnesandtheyaccountedfor18%oftheworld'

ssyntheticfibreproduction[3].Polypropylenefibreshavebeenwidelyusedinapparel,upholstery,floorcoverings,hygienemedical,geotextiles,carindustry,automotivetextiles,varioushometextiles,wall-coveringsandsoon[4].

1.1.Thedevelopmentofpolypropylenefires

Thesynthesisofhighlycrystallineisotacticpolypropyleneusingstereospecificcatalystswaspatentedin1954byNatta[5].TheyusedheterogeneouscatalystsofthetypediscoveredbyZieglerforthelow-pressurepolymerizationofethylene 

toyieldlinearhigh-densitypolyethylene.CommercialpolypropyleneproductionwasinitiallyundertakenbyMontecatiniandsubsequentlyexpandedbyICIFibreswhointroducedtheir‘Ulstron’productinlate1950s[6].However,becauseofpatentrestrictionsassociatedwithfibreproduction,fibrouspolypropyleneoftenappearedinthemarketintheformoftapesandfilamentsratherthanfibres;

itwasnotuntiltheearly1960sthatstaplefibresstartedtobeseenonthemarket[7].Intheearly1970stheemergenceofextruded,orientatedfilmtechnologyledtoanexpansionofpolypropyleneend-uses,includingtapes/slit-filmandvariousfibrillatedandfibrousproducts[1].

Themonomerpropylene 

isahydrocarbongasmainlyproducedfrompetroleumrefining.Thepolypropylenechaincomprisesamonomerwithanasymmetriccarbon 

atomattheC2 

position,–CH2CH(CH3)–,andhencethepolymermayexistinthreetypes(isotactic,syndiotacticandatactic)ofmolecularconfigurationsdependingupontherelativeorientationsofthemethylsidegroups[7].Bothisotacticandsyndiotacticformshavemethylgroupssituatedregularlywithrespecttoadjacentgroupsalongthemolecularchainandhavefibre-formingcharacterduetotheirpotentialforcreatingorderinthepolymerstructure.Currently,isotacticpolypropyleneisthemaincommerciallyavailablestereoisomerforuseinorientedfibrefilmsandtapes.AveryrecentEUpatent,however,hasdescribedthepropertiesoffibreswhen0.5–50%byweightofsyndiotacticpolypropylenehavingamulti-modalmolecularweightdistributionisincludedwithatleast50%byweightofanisotacticpolypropylene[8].

Thereasonfortherapidexpansioninproductioncapacityforpolypropyleneisitsadvantageoverpolyethylene 

incostandproperties.Aneconomicedgeinrawmaterialcostandthehighefficiencycatalystshavemadepolypropyleneaverylow-costfibre-formingplasticmaterial.Anumberofpropertiesareresponsibleforthewidespreadusageofpolypropylene.ThegeneralpropertiesofisotacticpolypropyleneareshowninTable1 

[9].

Table1.Propertiesofisotacticpolypropylene

Fibre-formingatacticpolypropyleneispartiallycrystalline,i.e.itpossessesatwo-phasesystemcomprisingcrystallineandnon-crystallineregions.Themolecularchainsofcrystallineisotacticpolypropyleneexistinhelicalcoilshavingthreemonomerunitsper 

repeatinghelixwithalengthof0.65nmforeachrepeatunit.Themethylgroupsarearrangedsystematicallyaroundthehelixformingthreelateralrowsabout120°

apartandthusclosepackingispossible.

Thecrystallinemeltingpointofisotacticpolypropylenewithacrystallinityofaround45%andcontaining90–95%isotacticmaterialisquotedas165°

C[10].TheTg 

valueofisotacticpolypropylenerangesfrom?

6?

130to25°

Cdependingonmethodofmeasurementandheat-annealingtreatments[10].Atacticpolypropylenehasaglasstransitiontemperature(Tg)of?

112to?

115°

Candnodefinedmeltingpoint.Table2 

showsthethermodynamicalpropertiesofpolypropylene.

Table2.Thethermodynamicalpropertiesofpolypropyleneat230°

C

H,enthalpy;

S,entropy;

P=pressure.

Becauseofitswhollyaliphatichydrocarbonstructure,polypropylenebyitselfburnsveryrapidlywitharelativelysmoke-freeflameandwithoutleavingacharresidue.Ithasahighself-ignitiontemperature(570°

C)andarapiddecompositionratecomparedwithwoodandothercellulosicmaterialsandhencehasahighflammability.TheheatofcombustionforpolypropylenewasreportedbyEinseleetal.[11]tobe40kJ/gandthisishigherthanmanyotherfibre-formingpolymers.GurniakandKohlhaas[12]investigatedthecombustibilitytestscarriedoutonfourdifferentbackingfabrics:

spunbondedpolypropylene,wovenpolypropylenetapewithnylon/polypropylenebondedstaplefibrefabrics,spunbondedBikofilament(polyestercore,nylonsheath),andFreudenberg'

sLutradurT5012spunbondedpolyester.Theyfoundthatthelowestflammabilitywasachievedbythespunbondedpolyesterproduct.Thisisasignificantobservationinthatpolypropylenecompeteswithpolyesterintermsoftensilepropertiesandprice,butitdoeshaveinferiorfireperformance.

Polypropylenepyrolysisisdominatedbyinitialchainscissions;

consequentlyconsiderableresearchhasbeenundertakenintheconversionofwastepolypropyleneintocleanhydrocarbonfuels[13 

and14]orothervaluableproductssuchaslubricants[15 

and16].ThethermaldegradationofbothisotacticPPandatacticPPhasbeeninvestigatedundernon-isothermalconditions.Themaximumvolatileproductevolutiontemperaturewas420°

CforatacticPPand425°

CfortheisotacticPP.Therecoveryofcarbon 

asorganicvolatileproductscompriseddienes,alkanes,andalkenes.MajorcompoundsareforinstanceC9compounds,like2-methyl-4-octene,2-methyl-2-octene,2,6-dimethyl-2,4-heptadiene,2,4-dimethyl-1-heptene,2-methyl-1-octene.Thehydrogencontentofpyrolysisproductsobtainedbyflashpyrolysisat520°

C,indicatesthemagnitudeoftheflammabilityproblemintermofitsfuel-formingpotential[17].Anabundanceofunsaturatedvolatilefuelfragmentsrenderstheflameretardationproblemevenmoresevereasthelonger,less-volatilemoleculesbehaveassecondaryfuelsources,whichdecomposefurther[18 

and19].

Coolflamecombustionofpolypropyleneat350°

Cleadstotheformationoftoxiccompoundswhichcancausedeathinmice,probablybecauseofincompletecombustionandCOformation[20].WhilethefirehazardcausedbytextilesingeneralhasbeenreviewedbyHorrocks[21]andChristian[22],theparticularhazardofpolypropylenewasnotedintheManchesterWoolworthFireof1979wherepolypropyleneupholsterycoversoverpolyurethane 

foamfillinginastackedfurniturepile 

wereidentifiedasthefirstmaterialignitedandwereresponsiblefortherapidgrowthofthatfire.The12deathsassociatedwiththisfiregaverisetotheneedtouseflameretardanttextilesinUKdomesticfurnishingsforthefirsttimein1980[23].

Hirschler[24]studiedthefirehazardandtoxicpotencyofthesmokefromburningpolypropylenein1987.Grand[25]investigatedtheeffectofexperimentalconditionsontheevolutionofcombustionproductsofpolypropylenebyusingamodifiedtoxicitytestapparatus.In2000,ShemwellandLevendis[26]studiedtheparticulate(soot)emissionsfromburningpolypropyleneandfourotherplastics.Resultsshowedthatboththeyieldsandthesizedistributionsoftheemittedsootwereremarkablydifferentforthefiveplasticsburned.Sootyieldsincreasedwithanincreaseofthenominalbulk(global)equivalenceratio(φ).Combustionofpolystyreneyieldedthehighestamountsofsoot

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 调解书

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2