三相逆变器双极性SPWM调制技术的仿真.docx

上传人:b****8 文档编号:9715499 上传时间:2023-05-20 格式:DOCX 页数:27 大小:433.53KB
下载 相关 举报
三相逆变器双极性SPWM调制技术的仿真.docx_第1页
第1页 / 共27页
三相逆变器双极性SPWM调制技术的仿真.docx_第2页
第2页 / 共27页
三相逆变器双极性SPWM调制技术的仿真.docx_第3页
第3页 / 共27页
三相逆变器双极性SPWM调制技术的仿真.docx_第4页
第4页 / 共27页
三相逆变器双极性SPWM调制技术的仿真.docx_第5页
第5页 / 共27页
三相逆变器双极性SPWM调制技术的仿真.docx_第6页
第6页 / 共27页
三相逆变器双极性SPWM调制技术的仿真.docx_第7页
第7页 / 共27页
三相逆变器双极性SPWM调制技术的仿真.docx_第8页
第8页 / 共27页
三相逆变器双极性SPWM调制技术的仿真.docx_第9页
第9页 / 共27页
三相逆变器双极性SPWM调制技术的仿真.docx_第10页
第10页 / 共27页
三相逆变器双极性SPWM调制技术的仿真.docx_第11页
第11页 / 共27页
三相逆变器双极性SPWM调制技术的仿真.docx_第12页
第12页 / 共27页
三相逆变器双极性SPWM调制技术的仿真.docx_第13页
第13页 / 共27页
三相逆变器双极性SPWM调制技术的仿真.docx_第14页
第14页 / 共27页
三相逆变器双极性SPWM调制技术的仿真.docx_第15页
第15页 / 共27页
三相逆变器双极性SPWM调制技术的仿真.docx_第16页
第16页 / 共27页
三相逆变器双极性SPWM调制技术的仿真.docx_第17页
第17页 / 共27页
三相逆变器双极性SPWM调制技术的仿真.docx_第18页
第18页 / 共27页
三相逆变器双极性SPWM调制技术的仿真.docx_第19页
第19页 / 共27页
三相逆变器双极性SPWM调制技术的仿真.docx_第20页
第20页 / 共27页
亲,该文档总共27页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

三相逆变器双极性SPWM调制技术的仿真.docx

《三相逆变器双极性SPWM调制技术的仿真.docx》由会员分享,可在线阅读,更多相关《三相逆变器双极性SPWM调制技术的仿真.docx(27页珍藏版)》请在冰点文库上搜索。

三相逆变器双极性SPWM调制技术的仿真.docx

三相逆变器双极性SPWM调制技术的仿真

目录

一摘要1

二引言2

三三项逆变器SPWM调制原理2

四SPWM控制方式3

4.1SPWM包括单极性和双极性两种调制方法……………………….3

4.2调制法4

五用matlab下的simulink和simpowersystems工具箱构建三相桥式逆变器SPWM调制的仿真模型8

5.1触发脉冲调制电路(subsystem封装模块)9

5.2主电路(subsystem1封装模块)13

六三相桥式逆变器SPWM调制的仿真波形14

6.1示波器B、C、D、E、F仿真的波形图16

七频谱分析22

7.1对相电压UN’、VN’、WN’输出电压进行谐波分析22

7.2对负载的线电压Uuv、Uvw、Uwu的输出波形进行谐波分析24

7.3负载VN的相电压UN、VN、WN输出波形进行谐波分析26

八结语28

九参考文献28

 

三相逆变器双极性SPWM调制技术的仿真

一摘要:

在电力电子技术中,PWM(PulseWidthModulation)控制就是对脉冲的宽度进行调制的技术。

即通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。

本论文以三相逆变器双极性SPWM调制技术的仿真为例,通过运用了Matlab/Simulink和PowerSystemBlock(PSB)电力系统模块集工具箱仿真环境,对电路进行建模、计算和仿真分析。

通过调节载波比N,用示波器观看输出波形的改变。

另外,采用subplot作出相电压、相电流、线电压、不同器件所承受的电压波形以及频谱图,并加以分析。

ABSTRACT:

Intheelectricpowerelectronictechnology,PWM(PulseWidthModulation)controlsiscarriesonthemodulationtothepulsewidththetechnology.Namelythroughcarriesonthemodulationtoaseriesofpulsewidth,comesequivalenttoobtainneedstheprofile(includingshapeandpeak-to-peakvalue).Thepresentpapertakethethree-phaseinvertorbipolaritySPWMmodulatingtechnologymodulatingtechniquesimulationasanexample,throughhasutilizedMatlab/SimulinkandPowerSystemtheBlock(PSB)electricalpowersystemmodulecollectiontoolboxsimulationenvironment,carriesonthemodelling,thecomputationandthesimulationanalysistotheelectriccircuit.ComparesNthroughtheadjustmentcarrier,watchestheoutputwaveshapewiththeoscilloscopethechange.Moreover,usessubplottomakethevoltagewaveformaswellasthespectrographwhichthephasevoltage,theinterphasecurrent,thelinevoltage,thedifferentcomponentwithstand,andanalyzes.

关键词:

PWM三相逆变器载波比N示波器仿真波形

二引言

PWM控制技术是在电力电子领域有着广泛的应用,并对电力电子技术产生十分深远的影响的一项技术。

近年来,PWM控制技术在整流电路中也开始应用,并显示了突出的优越性。

尤其是在逆变电路中应用最具有代表性。

可以说,正是由于PWM控制技术在逆变电路中的广泛而成功的应用,才奠定了PWM控制技术在电力电子技术中的突出地位。

以三相逆变器双极性SPWM调制技术的仿真为例,对PWM更深一步的了解与掌握。

三三项逆变器SPWM调制原理

PWM控制技术在逆变电路中的应用十分广泛,目前中小功率的逆变电路几乎都采用了PWM技术。

常用的PWM技术主要包括:

正弦脉宽调制(SPWM)、选择谐波调制(SHEPWM)、电流滞环调制(CHPWM)和电压空间矢量调制(SVPWM)。

在采样控制理论中有一个重要的结论:

冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

图1中各个形状的窄脉冲在作用到逆变器中电力电子器件时,其效果是相同的,正是基于这个理论,SPWM调制技术才孕育而生。

重要理论基础——面积等效原理

环节的输出响应波形基本相同

效果基本相同

a)矩形脉冲b)三角脉冲

c)正弦半波脉冲d)单位脉冲函数

图1形状不同而冲量相同的各种窄脉冲

四SPWM控制方式

4.1SPWM包括单极性和双极性两种调制方法

(1)如果在正弦调制波的半个周期内,三角载波只在正或负的一种极性范围内变化,所得到的SPWM波也只处于一个极性的范围内,叫做单极性控制方式。

(2)如果在正弦调制波半个周期内,三角载波在正负极性之间连续变化,则SPWM波也是在正负之间变化,叫做双极性控制方式。

图2双极性PWM控制方式

其中:

载波比——载波频率fc与调制信号频率fr之比N,既N=fc/fr

调制度――调制波幅值Ar与载波幅值Ac之比,即Ma=Ar/Ac

同步调制——N等于常数,并在变频时使载波和信号波保持同步。

Ø基本同步调制方式,fr变化时N不变,信号波一周期内输出脉冲数固定;

Ø三相电路中公用一个三角波载波,且取N为3的整数倍,使三相输出对称;

Ø为使一相的PWM波正负半周镜对称,N应取奇数;

Øfr很低时,fc也很低,由调制带来的谐波不易滤除;

Øfr很高时,fc会过高,使开关器件难以承受。

异步调制***——载波信号和调制信号不同步的调制方式。

Ø通常保持fc固定不变,当fr变化时,载波比N是变化的;

Ø在信号波的半周期内,PWM波的脉冲个数不固定,相位也不固定,正负半周期的脉冲不对称,半周期内前后1/4周期的脉冲也不对称;

Ø当fr较低时,N较大,一周期内脉冲数较多,脉冲不对称产生的不利影响都较小;

Ø当fr增高时,N减小,一周期内的脉冲数减少,PWM脉冲不对称的影响就变大。

4.2调制法

1)结合IGBT单相桥式电压型逆变电路对调制法进行说明

工作时V1和V2通断互补,V3和V4通断也互补。

以uo正半周为例,V1通,V2断,V3和V4交替通断。

负载电流比电压滞后,在电压正半周,电流有一段区间为正,一段区间为负。

负载电流为正的区间,V1和V4导通时,uo等于Ud。

V4关断时,负载电流通过V1和VD3续流,uo=0

负载电流为负的区间,V1和V4仍导通,io为负,实际上io从VD1和VD4流过,仍有uo=Ud。

V4关断V3开通后,io从V3和VD1续流,uo=0。

uo总可得到Ud和零两种电平。

uo负半周,让V2保持通,V1保持断,V3和V4交替通断,uo可得-Ud和零两种电平。

 

图3三相桥式PWM型逆变电路

2)U、V、W三相的PWM控制是通常公用一个三角波Uc,三相的调制信号Uru、Urv、Urw依次相差120°。

U、V、W各相功率开关器件的控制规律相同,现以U相为例来分析。

当Uru>Uc时,给桥臂V1以导通的信号,给下桥臂V4以关断的信号,则U相相对于直流电源假想中点N’的输出电压UN’=Ud/2。

当Uru

V1和V4的驱动信号始终时互补的。

当给V1(V4)加导通信号时,可能是V1(V4)导通,也可能是二极管VD1(VD4)续流导通,这要求阻感负载中电流方向来决定。

根据计算式可得,负载相电压UN可求得

UN=UN’-(UN’+VN’+WN’)/3

在电压型逆变电路的PWM控制中,同一相上下两个臂的驱动信号都是互补的。

3)双极性PWM控制方式(三相桥逆变)

下面以U相为例分析控制规律:

当urU>uc时,给V1导通信号,给V4关断信号,uUN’=Ud/2。

当urU

当给V1(V4)加导通信号时,可能是V1(V4)导通,也可能是VD1(VD4)导通。

uUN’、uVN’和uWN’的PWM波形只有±Ud/2两种电平。

uUV波形可由uUN’-uVN’得出,当1和6通时,uUV=Ud,当3和4通时,uUV=-Ud,当1和3或4和6通时,uUV=0。

输出线电压PWM波由±Ud和0三种电平构成

负载相电压PWM波由(±2/3)Ud、(±1/3)Ud和0共5种电平组成。

防直通的死区时间

同一相上下两臂的驱动信号互补,为防止上下臂直通而造成短路,留一小段上下臂都施加关断信号的死区时间。

死区时间的长短主要由开关器件的关断时间决定。

死区时间会给输出的PWM波带来影响,使其稍稍偏离正弦波。

 

3.3)特定谐波消去法

(SelectedHarmonicEliminationPWM—SHEPWM)

这是计算法中一种较有代表性的方法。

输出电压半周期内,器件通、断各3次(不包括0和π),共6个开关时刻可控。

为减少谐波并简化控制,要尽量使波形对称。

 

五用matlab下的simulink和simpowersystems工具箱构建三相桥式逆变器SPWM调制的仿真模型

5.1触发脉冲调制电路(subsystem封装模块)

脉冲电路参数设置为:

载波比N=9-21,取N=12,Ma=0.8-0.95,取Ma=0.8,单相调制信号波U,V,W依次相差120°电角度。

具体如下图。

 

脉冲电路中示波器scope的波形:

subplot(3,1,1);

plot(g.time,squeeze(g.signals

(1).values));

title('Ma²波形');

subplot(3,1,2);

plot(g.time,squeeze(g.signals

(2).values));

title('正弦Ma*U²波波形');

subplot(3,1,3);

plot(g.time,squeeze(g.signals(3).values));

title('三角波波形');

5.2主电路(subsystem1封装模块)

主电路仿真参数设置为:

E=100-300V;;h=0.0001s,取E1=100V,E2=100V。

故有E=E1+E2=200V。

电阻电感选用默认值,对三相桥式逆变器SPWM调制的进行仿真。

 

六三相桥式逆变器SPWM调制的仿真波形

示波器A

subplot(1,1,1);

plot(a.time,a.signals

(1).values);

title('三角载波与调制信号波波形')

载波比N=12

 

载波比N=20

6.1示波器B、C、D、E、F仿真的波形图

当N=12,E=200(E1+E2)时的波形图

示波器B:

subplot(6,1,1);

plot(b.time,squeeze(b.signals

(1).values));

title('触发脉冲out2电压波形')

gridon;

subplot(6,1,2);

plot(b.time,squeeze(b.signals

(2).values));

title('触发脉冲out3电压波形')

gridon;

subplot(6,1,3);

plot(b.time,squeeze(b.signals(3).values));

title('触发脉冲out4电压波形')

gridon;

subplot(6,1,4);

plot(b.time,squeeze(b.signals(4).values));

title('触发脉冲out5电压波形')

gridon;

subplot(6,1,5);

plot(b.time,squeeze(b.signals(5).values));

title('触发脉冲out6电压波形')

gridon;

subplot(6,1,6);

plot(b.time,squeeze(b.signals(6).values));

title('触发脉冲out7电压波形')

gridon;

波形如下:

示波器C

subplot(6,1,1);

plot(c.time,c.signals

(1).values);

subplot(6,1,2);

plot(c.time,c.signals

(2).values);

subplot(6,1,3);

plot(c.time,c.signals(3).values);

subplot(6,1,4);

plot(c.time,c.signals(4).values);

subplot(6,1,5);

plot(c.time,c.signals(5).values);

subplot(6,1,6);

plot(c.time,c.signals(6).values);

波形如下:

示波器D

subplot(3,1,1);

plot(d.time,d.signals

(1).values);

axis([0.04,0.08,-150,150]);

title('相电压UN’电压波形');

subplot(3,1,2);

plot(d.time,d.signals

(2).values);

axis([0.04,0.08,-150,150]);

title('相电压VN’电压波形');

subplot(3,1,3);

plot(d.time,d.signals(3).values);

axis([0.04,0.08,-150,150]);

title('相电压WN’电压波形');

波形如下:

示波器E

subplot(3,1,1);

plot(e.time,squeeze(e.signals

(1).values));

title('线电压UN’电压波形')

gridon;

subplot(3,1,2);

plot(e.time,squeeze(e.signals

(2).values));

title('线电压VN’电压波形')

gridon;

subplot(3,1,3);

plot(e.time,squeeze(e.signals(3).values));

title('线电压WN’电压波形')

gridon;

波形如下:

示波器F

subplot(3,1,1);

plot(f.time,squeeze(f.signals

(1).values));

axis([0.02,0.06,-150,150]);

subplot(3,1,2);

plot(f.time,squeeze(f.signals

(2).values));

axis([0.02,0.06,-150,150]);

subplot(3,1,3);

plot(f.time,squeeze(f.signals(3).values));

axis([0.02,0.06,-150,150]);

波形如下

七频谱分析

7.1对相电压UN’、VN’、WN’输出电压进行谐波分析

相电压UN’、VN’和WN’的三者谐波情况基本一样,其中:

Input1(UN’):

Fundamental(50HZ)=63.37,THD=196.19%

Input2(VN’):

Fundamental(50HZ)=60.59,THD=207.49%

Input3(WN’):

Fundamental(50HZ)=60.81,THD=206.84%

7.2对负载的线电压Uuv、Uvw、Uwu的输出波形进行谐波分析

Input1(Uuv):

Fundamental(50HZ)=106.5,THD=115.53%

Input2(Uvw):

Fundamental(50HZ)=108.2,THD=112.33%

Input3(Uwu):

Fundamental(50HZ)=108.2,THD=112.33%

7.3负载VN的相电压UN、VN、WN输出波形进行谐波分析

Input1(UN):

Fundamental(50HZ)=61.11,THD=116.81%

Input2(VN):

Fundamental(50HZ)=62.18,THD=113.30%

Input3(WN):

Fundamental(50HZ)=62.05,THD=113.30%

由于负载的参数一样,故相电压UN、VN和WN的三者谐波情况基本一样。

频谱分析情况基本一致。

可以看出,其PWM波中不含有低次谐波,只含有角频率为Wc及其附近的谐波,以及2Wc、3Wc等及其附近的谐波。

在上述谐波中,幅值最高影响最大的时角频率为Wc的谐波分量。

三相桥式PWM逆变电路可以每相各有一个载波信号,也可以三相公用一个载波信号。

这里只分析应用较多的公用载波信号时的情况。

在其输出线电压中,所包含的谐波角频率为式nwc+kwr(nwc-kwr)式中,

n=1,3,5,…时,k=3(2m-1)+1,m=1,2,3,…;

n=2,4,6,…时,k=6m+1(6m-1),m=0,1,…(1,2,…)。

从三相桥式PWM逆变输出线电压的频谱图知:

不含有低次谐波,载波角频率wc整数倍的谐波都没有了,谐波中的幅值较高的是wc+2wr(2wc-wr)。

 

八结语

通过以上的仿真过程分析,可以得到下列结论:

(1)与采用常规电路分析方法所得到的输出电压波形进行比较,进一步验证了仿真结果的正确性。

(2)载波频率越高,SPWM波形中谐波频率就越高。

所需滤波器的体积就越小。

一般在输出电压半周期内,器件通、断各k次,考虑到PWM波四分之一周期对称,k个开关时刻可控,除用一个自由度控制基波幅值外,可消去k-1个频率的特定谐波。

(3)三相桥式PWM型逆变电路采用双极性控制方式比交可行,且操作简单。

再依次验证了PWM控制技术在逆变电路中有着十分重要的意义。

九参考文献

黄俊,王兆安电力电子技术(第3版)北京:

机械工业出版社,1994

张晓华控制系统数字仿真与CAD(第2版)北京:

机械工业出版社2005

刘卫国,MATLAB程序设计与应用,(第2版)北京:

高等教育出版社,2002.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 法律文书

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2