氢气膜分离技术的现状Word格式.docx

上传人:b****1 文档编号:1084303 上传时间:2023-04-30 格式:DOCX 页数:17 大小:27.30KB
下载 相关 举报
氢气膜分离技术的现状Word格式.docx_第1页
第1页 / 共17页
氢气膜分离技术的现状Word格式.docx_第2页
第2页 / 共17页
氢气膜分离技术的现状Word格式.docx_第3页
第3页 / 共17页
氢气膜分离技术的现状Word格式.docx_第4页
第4页 / 共17页
氢气膜分离技术的现状Word格式.docx_第5页
第5页 / 共17页
氢气膜分离技术的现状Word格式.docx_第6页
第6页 / 共17页
氢气膜分离技术的现状Word格式.docx_第7页
第7页 / 共17页
氢气膜分离技术的现状Word格式.docx_第8页
第8页 / 共17页
氢气膜分离技术的现状Word格式.docx_第9页
第9页 / 共17页
氢气膜分离技术的现状Word格式.docx_第10页
第10页 / 共17页
氢气膜分离技术的现状Word格式.docx_第11页
第11页 / 共17页
氢气膜分离技术的现状Word格式.docx_第12页
第12页 / 共17页
氢气膜分离技术的现状Word格式.docx_第13页
第13页 / 共17页
氢气膜分离技术的现状Word格式.docx_第14页
第14页 / 共17页
氢气膜分离技术的现状Word格式.docx_第15页
第15页 / 共17页
氢气膜分离技术的现状Word格式.docx_第16页
第16页 / 共17页
氢气膜分离技术的现状Word格式.docx_第17页
第17页 / 共17页
亲,该文档总共17页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

氢气膜分离技术的现状Word格式.docx

《氢气膜分离技术的现状Word格式.docx》由会员分享,可在线阅读,更多相关《氢气膜分离技术的现状Word格式.docx(17页珍藏版)》请在冰点文库上搜索。

氢气膜分离技术的现状Word格式.docx

1983年,国外采用分离从炼厂气中回收的氢气量每日达一百万立方米。

[2]

2、化工和石油化工的工况条件适合于氢气膜分离

现代化工和炼制的工艺过程,有些是在有压力的情况下进行的,而且,它所排放的气体中含氢量较高,这非常适合于以氢的分压差为推动力的膜分离技术。

(1)列出了部分炼制的工艺条件。

从表

(1)可见,这些含氢的炼厂气一般都具有一定的温度和压力。

氢气属于永久性气体,因此,从含氢气体中把氢气分离出来,可以在压差较大的条件下进行。

由于氢气透过膜的渗透速率和压差成正比。

这样,就使氢气膜分离器具有较大的生产能力。

氢气膜分离正是利用了这些工艺气体所具有的压力来进行氢气的分离和提浓,因此,无需再进行压缩,所以,能耗较低。

(1)加氢(或付产氢)装置的工艺条件

工艺过程

氢耗量

(NM3氢/M3油)

操作压力

(MPa)

催化重整

142~214

1.04~3.43

石脑油加氢精制

1.8~9.0

1.37~3.43

馏份油加氢精制

18~54

1.73~5.49

瓦斯油脱硫

71~173

6.86~13.7

渣油脱硫

107~204

渣油加氢裂化

214~285

13.7~20.7

 表

(2)列出了石油炼制和化工过程中含氢气体的类型和组成。

从表

(2)可以看出,在这些含氢气体中,氢含量和气体压力都较高。

这就为膜分离提供了必要的条件。

(2)石油炼制和化工过程中,含氢气体的类型和组成(V%)

组分

合成氨

弛放气

甲醇

尾气

加氢精制

加氢裂化

催化裂化

干气

H2

50~60

80~85

70~80

60~70

20~50

N2

15~20

20~25

CH4

5~10

10~15

C2H6

3~5

2~3

C3H8

2~5

3~4

1~2

C4+

5~6

CO

CO2

H2O

0.5~1

气体压力

10~30

5~7

1~3

1.3~5.5

13~20

0.8~1.3

 3、现有的许多膜材质适合于氢气膜分离

现已工业化生产的多种高分子膜,对氢气不但具有较大的渗透速率,而且选择分离性也较高。

因此,非常适合从含氢混合气中分离和提浓氢气。

一些高分子膜对氢气和氮气、氢气和甲烷的渗透分离性能分别示于表(3)和表(4)。

表(3)氢气和氮气在高分子膜中的渗透分离性能(t=25℃)

膜材质

二甲基硅氧烷

390

181

2.15

聚苯醚

113

3.8

29.6

天然橡胶

49

9.5

5.2

聚砜

44

0.088

50

聚碳酸酯

12

0.3

40.0

醋酸纤维

0.14

27.1

聚酰亚胺

5.6

0.028

200

 氢气/甲烷的渗透分离性能和氢气/氮气的渗透分离性能非常相似。

详见表(4)。

表(4)氢气和甲烷在高分子膜中的渗透分离性能

膜材质

1010(cm3·

cm/cm2·

cmHg)

聚砜

13

0.22

60

0.20

9

0.048

聚乙烯三甲基硅烷

0.13

0.011

 从表(3)和表(4)可以知道,目前广泛应用的几种膜材料,不但对氢气的渗透性能好,而且对氮/氢分离或氢气/甲烷分离的选择性也佳。

4、采用氢气膜分离的经济合理性

采用氢气膜分离技术从催化裂化干气中回收和提浓氢气,其经济合理性主要体现在原料消耗、能耗和综合成本等方面。

现将不同制氢方法的经济性比较列于表(5)。

表(5)不同制氢方法的经济性比较*

氢气制备技术

原料消耗

(公斤)

能耗

(万大卡)

投资

(万元)

综合成本

氢气膜分离回收提浓氢

90

159

350

45~55

轻油蒸汽转化制氢

250

376

720

90~230

炼厂气蒸汽转化制氢

394

750

80~110

*干气来源为120万吨/年,25%减压渣油催化裂化干气,干气中H2=40~60%

以每回收1000NM3,H2=98%的氢气为基准。

从表(5)可见,与制氢相比,用氢气膜回收氢气,其原料消耗和能耗都将减少60%左右,投资费用和综合成本都可减少50%以上。

二、现状

早在1950年,Weller等人就设想从炼厂气中分离和回收氢气。

然而,当时制造的膜不仅渗透率低,而且选择性也差,几乎没有什么应用价值。

50年代以后,随着高分子材料研究的进展,为制造高分子膜提供了许多可以选择的高分子聚合物。

60年代以后,在制膜工艺上又实现了制成非对称膜和复合膜这两项重大突破。

到了70年代,正好遇上世界上出现了能源危机,当时的燃料价格几乎上涨了十倍。

由于气体膜分离过程无相变,节能降耗效果显着,操作简单,适应性强,于是,氢气膜分离技术也就应运而生,开始在石化工业中崭露头角。

目前,生产氢气膜分离器的主要厂家有:

美国的DuPont、AirProduct和日本的Ube工业株式会社等。

最早使用中空纤维膜分离氢气的工业试验是在60年代末,DuPont公司使用聚酯中空纤维膜分离器(permasep)来分离氢气。

由于膜的壁厚较厚,膜的强度不高,器的结构也有缺陷等原因,所以,在工业上未能应用。

真正奠定氢气膜分离在市场中地位的是Monsanto公司1979年推出的“Prism”中空纤维膜分离器。

它广泛地用于从合成氨弛放气或从甲醇弛放气中回收氢气用于增产氨或甲醇,从炼厂气中回收和提浓氢气用于油品加氢以及用它来进行H2/CO调比,来生产甲醇、乙醇等化工产品。

据1990年报导,全世界已有1000多套Prism装置投入运行。

[3]AirProduct公司生产的螺旋卷式膜分离器。

(Separex)在80年代初,也在美、日等国投入工业应用,用于从炼厂气中分离和提浓氢气。

其中,1988年为Esso公司在英国Fawlay炼厂建立了一套Separex膜分离装置,用于从加氢裂化尾气中回收氢气,处理能力为64900NM3/H,氢气回收率达90%,氢气浓度95%以上。

此外,在美国,还用它来进行H2/CO调比,处理能力为12000NM3/H,氢气浓度为95%,氢气回收率为63%。

日本Ube工业公司生产的聚酰亚胺膜,是一种耐热、耐腐蚀、选择分离性很高的膜,它生产的氢气膜分离器(Upilex)主要用于本国从炼厂气中回收氢气。

例如,从催化重整尾气中回收氢气,处理能力7500NM3/H,氢气回收率为80%,氢气浓度97%。

前苏联的深冷机械公司以聚乙烯三甲基硅烷为膜材料,制成了平板膜分离器,也把它用于从乙烷裂解气中回收氢气。

原料气中氢含量70%,处理能力2500NM3/H,回收氢气浓度92%。

现将国外主要生产氢气膜分离器的公司及其产品性能列于表(6)。

表(6)国外几种氢气膜分离器的性能[4]

 表(6)中所列Prism,其第一代产品膜材质是聚砜。

90年代后,它又研制出第二代产品,其膜材质也是聚酰亚胺。

因此,第二代Prism氢膜分离器的性能和日本Ubilex基本一样,这代表了当今氢气膜分离器的最高水平。

我国从1983年起,先后引进了20多套Prism膜分离装置,其中,80%用于从合成氨弛放气中回收氢气,其余20%用于从炼厂气中回收氢气。

1982年,中科院大连化物所开始研制氢气膜分离技术,经过努力,它研制生产的中空纤维氮氢膜分离器,先后于1993年获中国科技进步二等奖,1995年被列入国家科技成果重点推广计划。

大连化物所研制生产的氢气膜分离器,膜材质也是聚砜,其性能已达到第一代Prism膜分离器的水平。

综上所述,氢气分离膜经过了近40年的发展,主要是在膜材料、膜结构和膜组件型式等三个方面取得了很大的进展。

膜材料

从早期的醋酸纤维、聚砜发展到现在的聚酰胺、聚酰亚胺,不但使氢气选择性提高了4~5倍,而且使工作温度也提高2~3倍。

这样极大地提高了氢气分离膜的效率。

膜结构

早期制造的复合膜,底膜呈手指状的大孔,阻力虽小,但不耐压。

现在制造的复合膜,底膜呈蜂窝状小孔,阻力也不大,但能承受高压,使膜的耐压差提高了2~3倍。

当膜材料和膜面积确定后,气体渗透量和膜两侧压差成正比,耐压差的提高将增大气体的渗透量。

膜组件的型式

从早期的平板式,发展现在的螺旋卷式和中空纤维式,不但提高了膜的耐压程度,而且增大了膜的比表面积(即单位体积的膜面积)。

平板式的比表面积为300m2/m3,螺旋卷式为1000m2/m3,中空纤维式为15000m2/m3,如以平板式比表面积为1,则螺旋卷式为3.3,中空纤维式为50,比表面积增大了50倍,极大地提高了器的工作效率,减少了器的占地面积。

在取得以上的进展后,出现了现在的耐温、耐压、氢气选择性高、渗透气量大的氢气分离膜,从而为氢气分离膜在化工和石油化工工业中的应用奠定了基础。

 三、应用

1、从合成氨放空气中回收氢气

氢气和氮气在高温、高压和催化剂作用下合成氨,由于受化学平衡的限制,氨的转化率只有1/3左右。

为了提高回收率,就必须把未反应的气体进行循环。

在循环过程中,一些不参与反应的惰性气体会逐渐累积,从而降低了氢气和氮气分压,使转化率下降。

为此,要不定时的排放一部分循环气来降低惰气含量。

但在排放循环气的同时,因其中氢含量高达50%,所以也损失了大量的氢气。

截止到1997年底,全国合成氨年产量近三千万吨,居世界领先地位。

而每天放空气量达两千万立方米,相当于每天损失氢气890吨。

若每吨氢气按一万元计算,一天就要损失890万元,浪费惊人。

若采用传统的分离方法来回收氢气,由于成本高,经济上不合理。

今选用膜分离,从合成氨放空气中回收氢,它充分利用了合成的高压,实施有功降压,所以能耗低。

投用后,经济效益十分显着。

从70年代末开始,国外年产30万吨合成氨厂几乎都用上了膜分离氢回收装置。

我国从80年代初,也先后引进了14套膜分离装置。

自1988年起,大连化物所用自已研制生产的膜分离器,先后为国内外近百家化肥厂提供了膜分离氢回收装置。

统计结果表明,它不但可增产氨3~4%,而且使吨氨电耗下降了50度以上,其流程示意图如图

(1)所示。

1991年,为了适应化肥厂发展多种经营,以付养肥的需要,大连化物所又开发成功二级膜分离新工艺,即把一级膜分离提浓后的氢气作为原料气,再进入二级膜分离器中再提浓。

由此可以得到H2=99%的工业氢气。

为生产高附加值的加氢产品(如双氧水、糠醇等)提供了氢源。

国内已有近20个厂家采用了二级膜分离技术,使用效果很好,其流程示意图如图

(2)所示。

2、从合成甲醇放空气中回收氢

在合成甲醇时,也要排出一些惰气组分(如N2、CH4、Ar等)。

由于它们积聚在循环气中,会降低反应物的分压和转化率。

但是,这种排放也将损失大量的反应物(H2、CO、CO2)。

较好的方法是采用氢气膜分离来分离和回收氢气和二氧化碳。

从合成氨放空气中回收氢气是H2/N2分离,而从甲醇放空气中回收氢气是H2/CO分离。

二者的不同点还有:

前者压力高(28~32MPa),后者压力低(5~6MPa);

前者氢回收率高(R=85~90%),后者从调节H2/CO比例着想,氢回收率低(R=50%)。

此外,由于甲醇在水中溶解度比氨大,因此,水洗塔的尺寸和水耗、电耗都可减少。

其工艺流程示意图如图(3)所示。

1979年,美国首先把膜分离技术用于从甲醇放空气中回收氢气。

一个以天然气为原料,年产30万吨甲醇的厂家,放空气量为7500Nm3/h,投用后,效益显着。

①使甲醇增产2.5%;

②使天然气费用节省了23%。

目前,我国甲醇年产量约为170万吨,生产厂家100多个,其中年产量在10万吨以上的厂家只有5家,年产3~6万吨的厂家15个,而合成氨厂联产甲醇又占有很大比例。

由于大多数厂家技术落后,能耗高,按理说急需采用膜分离等高新技术来节能降耗。

可是由于生产厂家少,生产规模小,所以一直没有引起重视,至今在国内甲醇厂中还没有一套采用膜分离氢回收装置。

3、从炼厂气中回收氢气

石油加工涉及氢的化工产品都需要氢气,随着环保要求的日趋严格,对燃油中的硫含量的要求也越来越苛刻。

所以,对油品进行加氢精制必不可少。

此外,为了充分利用有限的石油资源,对重油进行加氢裂化来提高原油利用率,也成为一种发展趋势。

国外加氢工艺的发展和重整装置提供大量的廉价氢气分不开的。

近年来,国外炼厂虽然用氢量越来越大,需建设制氢装置,但是,重整氢仍占主导地位。

我国原油中轻馏分较少,并且还有相当数量的轻油用于合成氨和化纤工业。

此外,国内重整装置能力较小,付产氢量也较少,制氢能力也不大。

所以,氢源不足成了制约我国柴油加氢工艺发展中的一大障碍。

据国外统计,每年烧掉的氢量约占炼厂气中氢含量的40%,损失很大。

自从出现了氢气膜分离,变压吸附(PSA)和深冷等行之有效的氢气回收技术后,各国都非常重视从炼厂气中回收氢气。

采用膜分离从炼厂气中回收氢气,其技术指标归纳在表(7)。

 表(7)用膜分离从炼厂气中回收氢气的技术性能

炼厂气

分离对象

原E6EDF7

渗透气中

氢气回收率

H2浓度(%)

(%)

催化重整尾气

H2/CH4

90~97

75~95

催化裂化干气

80~90

加氢精制尾气

60~80

85~95

80~95

PSA解吸气

65~85

 采用膜分离技术从催化重整尾气、加氢精制尾气、加氢裂化尾气和催化裂化干气中回收氢气的流程示意图分别示于图(4)~图(7)。

i)从催化重整尾气中回收氢气

油品在催化重整过程中,烃类会发生氢转移反应,付产大量的富氢气体(H2≥80%),气体压力为1.5MPa左右。

可以用氢气膜分离技术从重整尾气中分离和提浓氢气。

其流程示意图示于图(4)。

90年,大连化物所、北京石油设计院和锦州炼油厂三方合作,在锦炼建立了一套处理重整尾气量为9600NM3/H的氢气膜分离装置。

设计指标为:

回收氢气浓度≥94%,氢气回收率≥90%。

93年,抚顺石油一厂也建立了一套氢气膜分离装置,处理量为100NM3/H,重整尾气中H2=82%,经膜分离后,回收氢气浓度98%,氢气回收率84%。

ii)从加氢精制尾气中回收氢气

在加氢精制过程中,由于要消耗氢气,使氢分压下降,于是,使含氢混合气中的惰气组份以及在精制过程中生成的惰气组份(N2、C1、C2等)的分压上升。

因而,降低了精制过程的转化率。

为了避免出现这种现象,必须排放大量的含氢气体。

采用氢气膜分离从加氢精制尾气中回收氢气的流程示意图示于图(5)。

iii)从加氢裂化尾气中回收氢气

在反应器内,由于氢气参加反应和溶解于油品中,生成的烃类又稀释了氢气等因素,从而都使氢分压下降,使加工能力受到影响。

为了保持氢分压,只好把反应后的气体向大气中排放。

据估算,每排放1克分子烃,就得损失4克分子氢。

采用氢气膜分离装置回收氢后,富氢气体(H2=95%)返回到新氢压缩机,其流程示意图如图(6)所示。

这样,每排放1克分子烃,只损失1/4克分子氢,氢气损失减少了16倍。

由于氢分压的提高,也增大了加氢裂化装置的加工能力。

据测算,氢分压每增加1MPa,加氢裂化装置的加工能力将增加9%。

此外,氢分压提高了,还将延长催化剂的使用寿命和再生期。

1989年,齐鲁石化胜利炼厂引进了一套氢气膜分离装置,处理气量18600NM3/H,加氢裂化尾气中H2=88%,回收后,产品氢浓度≥93%,氢气回收率>90%。

iv)从渣油催化裂化干气中回收氢气

渣油催化裂化技术是对重油进行深度加工的重要手段之一。

通过它,可把重质油转化成汽柴油和液化气。

在催化裂化过程中,由于催化剂受重金属污染,产氢量相当可观。

早在1980年,MonsantoCo.曾在Louisiana作过小试,干气中H2=12~26%,产品氢浓度60~84%。

为了探索从渣油催化裂化干气中回收氢气的可能性,1989年,大连化物所、北京石油设计院和石家庄炼油厂三方合作,在石炼进行小试。

干气处理量为50~60NM3/H,产品氢浓度可达94~95%,氢气回收率为50~55%。

于1992年通过了由中石化总公司发展部主持的鉴定。

鉴定意见认为:

“用氢气膜分离技术从渣油催化裂化干气中回收氢气,技术可行,经济效益显着,建议尽快建立工业试验装置。

由于催化裂化干气的含氢量低(H2=10~30%),压力也低(0.7MPa),在采用氢气膜分离技术来回收氢时,必须对原料气先增压,其流程示意图如图(7)所示。

据国外报导,采用膜分离从这样的催化裂化干气中回收氢气,氢气回收率70%,产品氢浓度60~80%,把膜分离后的贫氢尾气用于水蒸汽转化制氢的原料。

上述膜分离技术在国外早已实现工业化。

我国从1990年起也先后有了膜分离从炼厂气中回收氢的装置。

详见表(8)。

表(8)国内应用情况

应用单位

原料气

处理能力

(Nm3/h)

投用时间

备注

锦州炼油厂

9600

90年建成

国产器

抚顺石油一厂

93年投用

进口器

济南炼油厂

95年投用

燕山石化公司

700

96年投用

加氢裂化尾气

6000

98年投用

齐鲁石化公司

16500

91年投用

全套引进

武汉石油化工厂

800

武汉厂采用了膜法+PSA混合流程

 4、合成气H2/CO比例的调节

由合成气可合成许多化工产品,但所需的H2/CO比例是不同的,如表(9)所示。

表(9)某些以合成气为原料气的化工产品所需的H2/CO比例

产品

反应式

H2/CO

乙酸

2H2+2CO→CH3COOH

1.0

乙二醇

3H2+2CO→HOC2H4OH

1.5

乙醛

3H2+2CO→CH3CHO+H2O

乙醇

4H2+2CO→C2H5OH+H2O

2.0

乙烯

4H2+2CO→C2H4+2H2O

2H2+CO→CH3OH

石化企业普遍使用天然气蒸汽转化法为合成甲醇提供合成原料气,其流程示意图如图(8)所示。

一部分合成气用于合成甲醇,另一部分合成气通过深冷分离,可制得纯度高的CO,用于制备乙酸。

合成气中H2/CO=3/1,而合成甲醇时要求H2/CO=2/1。

为此,就必须将深冷法分出来的低压CO加入到高压合成原料气中,来进行调比,压力损失较大。

采用膜分离技术后,可通过渗透一部分氢气的办法,按要求在高压下连续地进行调比,同时,由膜分离获得一些工业氢(H2≥95%),可用于增产甲醇。

而由深冷制得的CO可全部用于生产乙酸,从而使乙酸生产能力提高30%。

早在80年代,国外已实现工业化。

96年,大连化学物理研究所和化八院、四川垫江天然气化工厂合作,在垫江厂进行了膜法调节合成气中H2/CO比例来制取乙醇(30吨/年)的中试,取得成功,并已通过鉴定。

具体试验结果如表(10)所示。

 表(10)膜分离技术用于合成气调比的中试结果

 现在,三方继续合作进行工业试验,国家有关部门十分重视,该项目可望列入“九五”攻关项目。

 四、氢气分离膜的技术特点

适用于原料气具有较高压力,富氢气体需低压使用,贫氢气体需高压使用工况。

适用于原料气中氢浓度较高的气体分离。

一般来说,当原料气中H2≥30%,膜分离的经济性较好。

适用于不需要同时获得高浓度氢和氢气高回收率的场合。

膜分离的可靠性最佳。

氢气分离的可靠性十分重要,尤其是当这一工艺是作为补充氢气的主要来源时,更显得重要。

可靠性通常以开工率和非计划停工率来衡量。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2