跨河特大桥贝雷架便桥计算书.docx

上传人:b****6 文档编号:11986266 上传时间:2023-06-03 格式:DOCX 页数:28 大小:244.99KB
下载 相关 举报
跨河特大桥贝雷架便桥计算书.docx_第1页
第1页 / 共28页
跨河特大桥贝雷架便桥计算书.docx_第2页
第2页 / 共28页
跨河特大桥贝雷架便桥计算书.docx_第3页
第3页 / 共28页
跨河特大桥贝雷架便桥计算书.docx_第4页
第4页 / 共28页
跨河特大桥贝雷架便桥计算书.docx_第5页
第5页 / 共28页
跨河特大桥贝雷架便桥计算书.docx_第6页
第6页 / 共28页
跨河特大桥贝雷架便桥计算书.docx_第7页
第7页 / 共28页
跨河特大桥贝雷架便桥计算书.docx_第8页
第8页 / 共28页
跨河特大桥贝雷架便桥计算书.docx_第9页
第9页 / 共28页
跨河特大桥贝雷架便桥计算书.docx_第10页
第10页 / 共28页
跨河特大桥贝雷架便桥计算书.docx_第11页
第11页 / 共28页
跨河特大桥贝雷架便桥计算书.docx_第12页
第12页 / 共28页
跨河特大桥贝雷架便桥计算书.docx_第13页
第13页 / 共28页
跨河特大桥贝雷架便桥计算书.docx_第14页
第14页 / 共28页
跨河特大桥贝雷架便桥计算书.docx_第15页
第15页 / 共28页
跨河特大桥贝雷架便桥计算书.docx_第16页
第16页 / 共28页
跨河特大桥贝雷架便桥计算书.docx_第17页
第17页 / 共28页
跨河特大桥贝雷架便桥计算书.docx_第18页
第18页 / 共28页
跨河特大桥贝雷架便桥计算书.docx_第19页
第19页 / 共28页
跨河特大桥贝雷架便桥计算书.docx_第20页
第20页 / 共28页
亲,该文档总共28页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

跨河特大桥贝雷架便桥计算书.docx

《跨河特大桥贝雷架便桥计算书.docx》由会员分享,可在线阅读,更多相关《跨河特大桥贝雷架便桥计算书.docx(28页珍藏版)》请在冰点文库上搜索。

跨河特大桥贝雷架便桥计算书.docx

跨河特大桥贝雷架便桥计算书

 

贝雷架便桥计算书

 

201年月

 

目录

第1章设计计算说明1

1.1设计依据1

1.2工程概况1

1.3.1主要技术参数1

1.3.2便桥结构3

第2章便桥桥面系计算4

2.1混凝土运输车作用下纵向分布梁计算4

2.1.1计算简图4

2.1.2.计算荷载4

2.1.3.结算结果5

2.1.4支点反力5

2.2履带吊作用下纵向分布梁计算5

2.2.1.计算简图5

2.2.2计算荷载6

2.2.3计算结果6

2.2.4.支点反力6

2.3分配横梁的计算7

2.3.1.计算简图7

2.3.2.计算荷载7

2.3.3.计算结果7

第3章贝雷架计算9

3.1混凝土运输车作用下贝雷架计算9

3.1.1最不利荷载位置确定9

3.1.2最不利位置贝雷架计算模型11

3.1.3最不利荷载位置贝雷架计算结果11

3.2履带吊作用下贝雷架计算14

3.1.1最不利位置贝雷架计算模型14

3.1.2最不利荷载位置贝雷架计算结果15

3.1.3腹杆加强后最不利荷载位置贝雷架计算结果17

第4章横梁及钢管桩计算21

3.1.横梁计算21

3.1.1履带吊工作状态偏心15cm21

3.1.2履带吊工作状态(无偏心)22

3.1.3履带吊偏心60cm走行状态23

3.1.4履带吊走行状态(无偏心)24

3.1.5混凝土运输车偏心130cm通过状态26

3.1.6混凝土运输车无偏心通过状态27

3.2最不利荷载位置钢管桩计算结果28

3.2.1计算荷载28

3.2.2计算结果29

第1章设计计算说明

1.1设计依据

①;大洋河大桥全桥总布置图(修改初步设计);

②《铁路桥涵施工规范》(TB10203-2002);

③《钢结构设计规范》GB50017-2003;

④《路桥施工计算手册》;

⑤《桥梁工程》、《结构力学》、《材料力学》;

⑥其他相关规范手册。

1.2工程概况

北大河特大桥:

位于某省某市境内,桥梁起点DK711+296.48,桥梁终点DK712+523.05,全长1076.1m。

包括7片12m空间刚构、30片32m简支箱梁、35座桥墩、2座桥台。

北大河特大桥跨越跨越一条河流。

河流水文情况:

北大河兰新铁路便桥河段采用冰沟水文站历年实测最大洪峰流量910立方米/秒。

便桥河段最大洪峰相对应最大流速为3.55米/秒。

共统计2005年——2009年水文资料。

1.3便桥设计

1.3.1主要技术参数

(1)便桥标高的确定:

便桥总长度拟定153米,共设17跨,每跨长度为9米。

墩身高度为7米。

钢管打入河床下8米。

保证在河流冲刷线以下0.5米。

验算栈桥过水能力和流速的校核,已知断面形式b=153mh=7m、底坡i

=0.5%。

粗糙n=0.03校核流量Q.

过水面积A=BH=153*7=1071M2

湿周x=B+2H=167m

水力半径R=A/x=6.41m

谢才系数C=R1/6/n=42.04m1/2/s

流量Q=AC

=3604.8m3/s>910m3/s(该河流五年内最大洪峰流量)满足要求。

(2)荷载确定

桥面荷载考虑以下三种情况:

公路一级车辆荷载;便桥使用中最重车辆9m³的混凝土运输车;便桥架设时履带吊的荷载。

与公路一级车辆荷载比较混凝土运输车的轴重和轴距都非常不利,所以将其作为计算荷载,将履带吊架梁工况作为检算荷载。

1台9m³的混凝土运输车车辆荷载的立面及平明面如下(参考车型:

海诺集团生产HNJ5253GJB(9m³)):

荷载平面图

荷载立面图

P1=6T

P2=P3=17T

合计:

40T

履带吊架梁时荷载立面及平面如下:

履带吊重50t,吊重按15t考虑。

(3)钢弹性模量Es=2.1×105MPa;

(4)材料容许应力:

1.3.2便桥结构

便桥采用(12+12+9)*3连续梁结构,便桥基础采用φ529*10钢管桩基础,每墩位设置六根钢管,桩顶安装2I32b作为横梁,梁部采用4榀贝雷架,间距450+2700+450mm,贝雷梁上横向安装I20b横梁,横梁位于贝雷架节点位置,间距705+705+705+885mm,横梁上铺设16b槽钢,槽向向下,间距190mm,在桥面槽钢上焊制φ12mm短钢筋作为防滑设施。

第2章便桥桥面系计算

桥面系计算主要包括桥面纵向分布梁[16b及横向分配梁I20b的计算。

根据上表描述的工况,分别对其计算,以下为计算过程。

2.1混凝土运输车作用下纵向分布梁计算

2.1.1计算简图

纵向分布梁支撑在横向分配梁上,按5跨连续梁考虑,计算简图如下:

弯矩最不利位置

剪力、支点反力最不利位置

2.1.2.计算荷载

计算荷载按三种荷载组合分别计算。

⑴计算荷载:

计算荷载为9m3混凝土运输车,前轴重由8根槽钢承担,每根槽钢承担P1=60000/8=7500N,后轴重同样也由8根槽钢承担,每根槽钢承担P2=170000/8=21250N

2.1.3.结算结果

按上述图示与荷载,计算纵向分布梁结果如下:

Mmax=3.1049KN*m

Qmax=20.797KN

[16b的截面几何特性为:

I=85.3cm4W=17.5cm3

A=25.1cm2A0=10*(65-8.5*2)*2=960mm2

σmax=Mmax/W=3.1049·106/17.5·103=179.5N/mm2

<145*1.3=188.5N/mm2

τmax=Qmax/A0=20.797·103/960=21.2N/mm2

<85N/mm2

2.1.4支点反力

R1=68.3N;R2=76.3N;R3=20930N;R4=2988N;R5=5945N;R6=-527.5N

结论:

在9m3混凝土运输车作用下,纵向分布梁采用[16b,间距19cm可满足施工要求!

2.2履带吊作用下纵向分布梁计算

2.2.1.计算简图

履带吊荷载半跨布置时,为最不利荷载,其计算简图如下:

2.2.2计算荷载

单个履带板宽度为700mm,按由4根槽钢承担考虑,履带吊按吊重25t,并考虑1.3的冲击系数与不均载系数,荷载

q=(55+15)*1.3*10000/2/4500/4=25.3N/mm

2.2.3计算结果

按上述荷载与图示,计算结果为:

Mmax=1.539KN*m

Qmax=11.61KN

[16b的截面几何特性为:

I=85.3cm4W=17.5cm3

A=25.1cm2A0=10*(65-8.5*2)*2=960mm2

σmax=Mmax/W=1.539·106/17.5·103=87.9N/mm2

<145*1.3=188.5N/mm2

τmax=Qmax/A0=11.61·103/960=12.1N/mm2

<85N/mm2

2.2.4.支点反力

R1=406.3N;R2=-2012N;R3=12782N;R4=21328N;R5=19169N;R6=7281N

结论:

在55t履带吊吊重25t作用下,纵向分布梁采用[16b,间距19cm可满足施工要求!

2.3分配横梁的计算

2.3.1.计算简图

分配横梁按支撑于贝雷架的连续梁计算,荷载由纵向分布梁传递,其计算简图如下:

2.3.2.计算荷载

分配横梁的荷载由纵向分布梁传递,由计算结果可知,最不利荷载为履带吊作用时的荷载,P=24363N。

2.3.3.计算结果

按上述荷载与计算简图计算,计算结果为:

Mmax=25.941KN*m

Qmax=97.669KN

I20b的截面几何特性为:

I=2500cm4W=250cm3

A=39.5cm2A0=9*(200-11.4*2)=1595mm2

σmax=Mmax/W=25.941·106/250·103=103.8N/mm2

<145*1.3=188.5N/mm2

τmax=Qmax/A0=97.669·103/1595=61.2N/mm2

<85N/mm2

⑷支点反力

R1=-74.688KNR2=142.47KNR3=-3.76KNR4=132.44KN

结论:

在最不利荷载作用下,分配横梁采用I20b,间距705*3+885mm可满足施工要求!

第3章贝雷架计算

贝雷架按12+12+9m为一联计算,采用平面杆系结构建模,上下弦杆及竖杆使用梁单元BEAM3模拟,斜腹杆使用杆单元LINK1模拟,两片桁架片之间铰接,贝雷架的荷载由分配横梁传递,为模拟移动荷载从而找出不利位置,建模时考虑与分配横梁与纵向分布梁整体建立。

3.1混凝土运输车作用下贝雷架计算

3.1.1最不利荷载位置确定

(1)计算模型

模型按12+12+9m连续梁建模,简图如下:

移动荷载计算建模简图

(2)计算荷载

由分配横梁计算结果得到,P1=43231N,P2=P3=20930N。

(3)结算结果

由计算结果得到,车头距梁端7.95米时,距梁端6.65米位置为上下弦杆最不利截面,车头距梁端12.95米时为端腹杆最不利位置,下图为截面的位移影响线图。

 

距梁端6.65米截面位移影响线图

距梁端11.91米截面位移影响线图

3.1.2最不利位置贝雷架计算模型

(1)计算模型

模型仍然按12+12+9m连续梁建模,荷载按上述最不利荷载位置施加,简图如下:

上下弦杆最不利荷载位置计算简图

腹杆最不利荷载位置计算简图

(2)荷载为分配横梁反力,其值与移动荷载时相同

P1=43231N,P2=P3=20930N。

3.1.3最不利荷载位置贝雷架计算结果

1、上弦杆计算

Mmax=5.35KN*m对应轴力N=343.9KN

Qmax=49.642KN

Nmax=-343.9KN

2[10的截面几何特性为:

Ix=2*198=396cm4Wx=2*39.7=79.4cm3ix=3.95cm

A=2*12.7=25.4cm2A0=2*5.3*(100-8.5*2)=879.8mm2

(1)强度计算:

σmax=N/A+Mmax/W=343.9*1000/2540+5.35·106/79.4·103

=202.8N/mm2<210*1.3=273Mpa

τmax=Qmax/A0=49.642·103/879.8=56.5N/mm2

<85N/mm2

(2)稳定计算:

L=705mm,ix=39.5mm,λ=705/39.5=18,查φx=0.976

βx=1.0γx=1.05

Ncr=16252507

σmax=N/(φx*A)+βxMmax/(γx*Wx)/(1-0.8*(N/Ncr))

=204.2N/mm2<210*1.3=273Mpa

2、下弦杆计算

Mmax=7.29KN*m对应轴力N=-191.76KN

Qmax=67.525KN

Nmax=344.12KN

2[10的截面几何特性为:

Ix=2*198=396cm4Wx=2*39.7=79.4cm3ix=3.95cm

A=2*12.7=25.4cm2A0=2*5.3*(100-8.5*2)=879.8mm2

(1)强度计算:

σmax=N/A+Mmax/W=191.76*1000/2540+7.29·106/79.4·103

=167.3N/mm2<210*1.3=273Mpa

τmax=Qmax/A0=67.525·103/879.8=76.8N/mm2

<85N/mm2

(2)稳定计算:

L=705mm,ix=39.5mm,λ=705/39.5=18,查φx=0.976

βx=1.0γx=1.05

Ncr=16252507

σmax=N/(φx*A)+βxMmax/(γx*Wx)/(1-0.8*(N/Ncr))

=168.9N/mm2<210*1.3=273Mpa

3、腹杆计算

Nmax=-213.82KN

I8的截面几何特性为:

Ix=99cm4Wx=25.8cm3ix=3.21cm

A=9.58cm2

(1)强度计算:

σmax=N/A=213.82*1000/958

=223.2N/mm2<200*1.3=260Mpa

(2)稳定计算(平面外稳定因有支撑架,可以不计算稳定):

L=1400mm,ix=32.1mm,λx=1400/32.1=43.6,

查φy=0.885

σmax=N/(φx*A)=213.82*1000/(0.885*958)

=252.2N/mm2<200*1.3=260Mpa

结论:

在混凝土运输车荷载作用下,贝雷架各杆件强度满足要求。

3.2履带吊作用下贝雷架计算

3.1.1最不利位置贝雷架计算模型

(1)计算模型

模型按12+12+9m连续梁建模,荷载按上述最不利荷载位置施加,简图如下:

上下弦杆最不利荷载位置计算简图

腹杆最不利荷载位置计算简图

(2)最大工况荷载为履带吊插打钢护筒,履带吊自重55t,钢护筒自重及配件等按15t考虑,并考虑冲击系数与不均载系数1.3,跨中荷载分配比例(全偏载)为0.408:

0.173:

0.168:

0.251,梁端荷载分配系数(距一侧30cm)为0.508:

0:

0:

0.492

跨中布载时最不利的贝雷架分配到的荷载为:

q=(55+15)*1.3*10000/4500*0.408=82.51N/mm。

梁端布载时最不利的贝雷架分配到的荷载为:

q=(55+15)*1.3*10000/4500*0.508=102.73N/mm。

3.1.2最不利荷载位置贝雷架计算结果

1、上弦杆计算

Mmax=6.399KN*m对应轴力N=193.03KN

Qmax=71.2KN

Nmax=-523.24KN

2[10的截面几何特性为:

Ix=2*198=396cm4Wx=2*39.7=79.4cm3ix=3.95cm

A=2*12.7=25.4cm2A0=2*5.3*(100-8.5*2)=879.8mm2

(1)强度计算:

σwmax=N/A+Mmax/W=193.03*1000/2540+6.399·106/79.4·103

=156.6N/mm2<210*1.3=273Mpa

σmax=N/A=523.24*1000/2540

=206N/mm2<200*1.3=260Mpa

τmax=Qmax/A0=71.2·103/879.8=80.9N/mm2

<160N/mm2

(2)稳定计算:

L=705mm,ix=39.5mm,λ=705/39.5=18,查φx=0.976

βx=1.0γx=1.05

Ncr=16252507

σmax=N/(φx*A)+βxMmax/(γx*Wx)/(1-0.8*(N/Ncr))

=155N/mm2<210*1.3=273Mpa

2、下弦杆计算

Mmax=10.718KN*m对应轴力N=-272.7KN

Qmax=119.1KN

Nmax=523.36KN

2[10的截面几何特性为:

Ix=2*198=396cm4Wx=2*39.7=79.4cm3ix=3.95cm

A=2*12.7=25.4cm2A0=2*5.3*(100-8.5*2)=879.8mm2

(1)强度计算:

σmax=N/A+Mmax/W=272.7*1000/2540+10.718·106/79.4·103

=242.3N/mm2<210*1.3=273Mpa

τmax=Qmax/A0=119.1·103/879.8=135.3N/mm2

<160N/mm2

(2)稳定计算:

L=705mm,ix=39.5mm,λ=705/39.5=18,查φx=0.976

βx=1.0γx=1.05

Ncr=16252507

σmax=N/(φx*A)+βxMmax/(γx*Wx)/(1-0.8*(N/Ncr))

=240.2N/mm2<210*1.3=273Mpa

3、腹杆计算

Nmax=-242.32KN

I8的截面几何特性为:

Ix=99cm4Wx=25.8cm3ix=3.21cm

A=9.58cm2

(1)强度计算:

σmax=N/A=242.32*1000/958

=252.9N/mm2<200*1.3=260Mpa

(2)稳定计算(平面外稳定因有支撑架,可以不计算稳定):

L=1400mm,ix=32.1mm,λx=1400/32.1=43.6,

查φy=0.885

σmax=N/(φx*A)=242.32*1000/(0.885*958)

=285.8N/mm2>200*1.3=260Mpa

端腹杆强度不能满足要求,需对端腹杆加强,加强方式为在工字钢横梁上设置支撑杆,支撑杆支撑到上弦杆位置,减小对端腹杆的压力。

3.1.3腹杆加强后最不利荷载位置贝雷架计算结果

1、腹杆加强示意图

2、上弦杆计算

Mmax=6.522KN*m对应轴力N=189.65KN

Qmax=72.461KN

Nmax=-520.87KN

2[10的截面几何特性为:

Ix=2*198=396cm4Wx=2*39.7=79.4cm3ix=3.95cm

A=2*12.7=25.4cm2A0=2*5.3*(100-8.5*2)=879.8mm2

(1)强度计算:

σwmax=N/A+Mmax/W=189.65*1000/2540+6.522·106/79.4·103

=156.8N/mm2<210*1.3=273Mpa

σmax=N/A=523.24*1000/2540

=206N/mm2<200*1.3=260Mpa

τmax=Qmax/A0=72.46·103/879.8=82.3N/mm2

<160N/mm2

(2)稳定计算:

L=705mm,ix=39.5mm,λ=705/39.5=18,查φx=0.976

βx=1.0γx=1.05

Ncr=16252507

σmax=N/(φx*A)+βxMmax/(γx*Wx)/(1-0.8*(N/Ncr))

=158.3N/mm2<210*1.3=273Mpa

3、下弦杆计算

Mmax=11.041KN*m对应轴力N=-273.2KN

Qmax=122.69KN

Nmax=521KN

2[10的截面几何特性为:

Ix=2*198=396cm4Wx=2*39.7=79.4cm3ix=3.95cm

A=2*12.7=25.4cm2A0=2*5.3*(100-8.5*2)=879.8mm2

(1)强度计算:

σmax=N/A+Mmax/W=273.2*1000/2540+11.041·106/79.4·103

=246.6N/mm2<210*1.3=273Mpa

τmax=Qmax/A0=122.69·103/879.8=139.5N/mm2

<160N/mm2

(2)稳定计算:

L=705mm,ix=39.5mm,λ=705/39.5=18,查φx=0.976

βx=1.0γx=1.05

Ncr=16252507

σmax=N/(φx*A)+βxMmax/(γx*Wx)/(1-0.8*(N/Ncr))

=243.2N/mm2<210*1.3=273Mpa

4、腹杆计算

Nmax=-158.67KN

I8的截面几何特性为:

Ix=99cm4Wx=25.8cm3ix=3.21cm

A=9.58cm2

(1)强度计算:

σmax=N/A=158.67*1000/958

=165.6N/mm2<200*1.3=260Mpa

(2)稳定计算(平面外稳定因有支撑架,可以不计算稳定):

L=1400mm,ix=32.1mm,λx=1400/32.1=43.6,

查φy=0.885

σmax=N/(φx*A)=158.67*1000/(0.885*958)

=187.1N/mm2<200*1.3=260Mpa

端腹杆强度不能满足要求,需对端腹杆加强,加强方式为在工字钢横梁上设置支撑杆,支撑杆支撑到上弦杆位置,减小对端腹杆的压力。

结论:

在履带吊荷载作用下,贝雷架端部加强后,强度满足要求。

第4章横梁及钢管桩计算

3.1.横梁计算

3.1.1履带吊工作状态偏心15cm

1、计算简图

2、计算荷载

计算荷载考虑55t履带吊重15t工作状态下,冲击系数与不均载系数按1.3采用,q=(55+15)*1.3*10000/2/700=650N/mm

3、计算结果

按上述荷载与计算简图计算,计算结果为:

Mmax=86.63KN*m

Qmax=434KN

2I32b的截面几何特性为:

I=11620*2=23240cm4W=726*2=1452cm3

A=73.4*2=146.8cm2A0=2*11.5*(320-15*2)=6670mm2

σmax=Mmax/W=86.63·106/1452·103=59.7N/mm2

<145*1.3=188.5N/mm2

τmax=Qmax/A0=434·103/6670=65.1N/mm2

<85N/mm2

4、支点反力

R1=453.78KNR2=191.35KNR3=385.53KN

结论:

履带吊在偏心15cm工作状态下,横梁采用2I32b,可满足施工要求!

3.1.2履带吊工作状态(无偏心)

1、计算简图

2、计算荷载

计算荷载取用偏心时计算荷载,q=(55+15)*1.3*10000/2/700=650N/mm

3、计算结果

按上述荷载与计算简图计算,计算结果为:

Mmax=79.76KN*m

Qmax=399.63KN

2I32b的截面几何特性为:

I=11620*2=23240cm4W=726*2=1452cm3

A=73.4*2=146.8cm2A0=2*11.5*(320-15*2)=6670mm2

σmax=Mmax/W=79.76·106/1452·103=55N/mm2

<145*1.3=188.5N/mm2

τmax=Qmax/A0=399.63·103/6670=59.9N/mm2

<85N/mm2

4、支点反力

R1=419.41KNR2=191.84KNR3=419.41KN

结论:

履带吊在无偏心工作状态下,横梁采用2I32b,可满足施工要求!

3.1.3履带吊偏心60cm走行状态

1、计算简图

2、计算荷载

计算荷载考虑55t履带吊走行状态下,冲击系数按1.2采用,q=55*1.2*10000/2/700=471.4N/mm

3、计算结果

按上述荷载与计算简图计算,计算结果为:

Mmax=140.19KN*m

Qmax=317.45KN

2I32b的截面几何特性为:

I=11620*2=23240cm4W=726*2=1452cm3

A=73.4*2=146.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 教学研究 > 教学计划

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2