本科毕业论文燃煤电站锅炉汽包及水冷壁启动过程分析与保护.docx

上传人:b****6 文档编号:13716214 上传时间:2023-06-16 格式:DOCX 页数:30 大小:54.40KB
下载 相关 举报
本科毕业论文燃煤电站锅炉汽包及水冷壁启动过程分析与保护.docx_第1页
第1页 / 共30页
本科毕业论文燃煤电站锅炉汽包及水冷壁启动过程分析与保护.docx_第2页
第2页 / 共30页
本科毕业论文燃煤电站锅炉汽包及水冷壁启动过程分析与保护.docx_第3页
第3页 / 共30页
本科毕业论文燃煤电站锅炉汽包及水冷壁启动过程分析与保护.docx_第4页
第4页 / 共30页
本科毕业论文燃煤电站锅炉汽包及水冷壁启动过程分析与保护.docx_第5页
第5页 / 共30页
本科毕业论文燃煤电站锅炉汽包及水冷壁启动过程分析与保护.docx_第6页
第6页 / 共30页
本科毕业论文燃煤电站锅炉汽包及水冷壁启动过程分析与保护.docx_第7页
第7页 / 共30页
本科毕业论文燃煤电站锅炉汽包及水冷壁启动过程分析与保护.docx_第8页
第8页 / 共30页
本科毕业论文燃煤电站锅炉汽包及水冷壁启动过程分析与保护.docx_第9页
第9页 / 共30页
本科毕业论文燃煤电站锅炉汽包及水冷壁启动过程分析与保护.docx_第10页
第10页 / 共30页
本科毕业论文燃煤电站锅炉汽包及水冷壁启动过程分析与保护.docx_第11页
第11页 / 共30页
本科毕业论文燃煤电站锅炉汽包及水冷壁启动过程分析与保护.docx_第12页
第12页 / 共30页
本科毕业论文燃煤电站锅炉汽包及水冷壁启动过程分析与保护.docx_第13页
第13页 / 共30页
本科毕业论文燃煤电站锅炉汽包及水冷壁启动过程分析与保护.docx_第14页
第14页 / 共30页
本科毕业论文燃煤电站锅炉汽包及水冷壁启动过程分析与保护.docx_第15页
第15页 / 共30页
本科毕业论文燃煤电站锅炉汽包及水冷壁启动过程分析与保护.docx_第16页
第16页 / 共30页
本科毕业论文燃煤电站锅炉汽包及水冷壁启动过程分析与保护.docx_第17页
第17页 / 共30页
本科毕业论文燃煤电站锅炉汽包及水冷壁启动过程分析与保护.docx_第18页
第18页 / 共30页
本科毕业论文燃煤电站锅炉汽包及水冷壁启动过程分析与保护.docx_第19页
第19页 / 共30页
本科毕业论文燃煤电站锅炉汽包及水冷壁启动过程分析与保护.docx_第20页
第20页 / 共30页
亲,该文档总共30页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

本科毕业论文燃煤电站锅炉汽包及水冷壁启动过程分析与保护.docx

《本科毕业论文燃煤电站锅炉汽包及水冷壁启动过程分析与保护.docx》由会员分享,可在线阅读,更多相关《本科毕业论文燃煤电站锅炉汽包及水冷壁启动过程分析与保护.docx(30页珍藏版)》请在冰点文库上搜索。

本科毕业论文燃煤电站锅炉汽包及水冷壁启动过程分析与保护.docx

本科毕业论文燃煤电站锅炉汽包及水冷壁启动过程分析与保护

 

毕业设计(论文)

 

题目:

火电厂锅炉汽包及水冷壁启动过程分析与保护

 

毕业设计(论文)原创性声明和使用授权说明

原创性声明

本人郑重承诺:

所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:

     日 期:

     

指导教师签名:

     日  期:

     

使用授权说明

本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:

按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:

     日 期:

     

学位论文原创性声明

本人郑重声明:

所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:

日期:

年月日

学位论文版权使用授权书

本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权    大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:

日期:

年月日

导师签名:

日期:

年月日

 

指导教师评阅书

指导教师评价:

一、撰写(设计)过程

1、学生在论文(设计)过程中的治学态度、工作精神

□优□良□中□及格□不及格

2、学生掌握专业知识、技能的扎实程度

□优□良□中□及格□不及格

3、学生综合运用所学知识和专业技能分析和解决问题的能力

□优□良□中□及格□不及格

4、研究方法的科学性;技术线路的可行性;设计方案的合理性

□优□良□中□及格□不及格

5、完成毕业论文(设计)期间的出勤情况

□优□良□中□及格□不及格

二、论文(设计)质量

1、论文(设计)的整体结构是否符合撰写规范?

□优□良□中□及格□不及格

2、是否完成指定的论文(设计)任务(包括装订及附件)?

□优□良□中□及格□不及格

三、论文(设计)水平

1、论文(设计)的理论意义或对解决实际问题的指导意义

□优□良□中□及格□不及格

2、论文的观念是否有新意?

设计是否有创意?

□优□良□中□及格□不及格

3、论文(设计说明书)所体现的整体水平

□优□良□中□及格□不及格

建议成绩:

□优□良□中□及格□不及格

(在所选等级前的□内画“√”)

指导教师:

(签名)单位:

(盖章)

年月日

评阅教师评阅书

评阅教师评价:

一、论文(设计)质量

1、论文(设计)的整体结构是否符合撰写规范?

□优□良□中□及格□不及格

2、是否完成指定的论文(设计)任务(包括装订及附件)?

□优□良□中□及格□不及格

二、论文(设计)水平

1、论文(设计)的理论意义或对解决实际问题的指导意义

□优□良□中□及格□不及格

2、论文的观念是否有新意?

设计是否有创意?

□优□良□中□及格□不及格

3、论文(设计说明书)所体现的整体水平

□优□良□中□及格□不及格

建议成绩:

□优□良□中□及格□不及格

(在所选等级前的□内画“√”)

评阅教师:

(签名)单位:

(盖章)

年月日

 

教研室(或答辩小组)及教学系意见

教研室(或答辩小组)评价:

一、答辩过程

1、毕业论文(设计)的基本要点和见解的叙述情况

□优□良□中□及格□不及格

2、对答辩问题的反应、理解、表达情况

□优□良□中□及格□不及格

3、学生答辩过程中的精神状态

□优□良□中□及格□不及格

二、论文(设计)质量

1、论文(设计)的整体结构是否符合撰写规范?

□优□良□中□及格□不及格

2、是否完成指定的论文(设计)任务(包括装订及附件)?

□优□良□中□及格□不及格

三、论文(设计)水平

1、论文(设计)的理论意义或对解决实际问题的指导意义

□优□良□中□及格□不及格

2、论文的观念是否有新意?

设计是否有创意?

□优□良□中□及格□不及格

3、论文(设计说明书)所体现的整体水平

□优□良□中□及格□不及格

评定成绩:

□优□良□中□及格□不及格

(在所选等级前的□内画“√”)

教研室主任(或答辩小组组长):

(签名)

年月日

教学系意见:

系主任:

(签名)

年月日

毕业设计任务书

姓名

专业

热能动力设备与应用

毕业设计题目

火电厂锅炉汽包及水冷壁启动过程分析与保护

毕业设计工作起止时间

2011年4月1日至2011年6月1日

地点

三友电厂

毕业设计(论文)的内容:

1、锅炉启动状态的划分与启动方式的分类

2、自然循环锅炉启动过程中汽包的应力分析

3、锅炉启动过程中汽包的应力控制原则及措施

4、汽包水位波动大的原因及预防措施

5、锅炉启动过程中水冷壁的运行工况分析及保护措施

毕业设计(论文)的要求:

指导教师签名:

摘要

随着火力发电厂装机容量的增大,发电机组的安全运行成为影响火力发电厂经济效益的重点,因而预防电厂事故显得至关重要。

我国火电机组中停运事故的50%以上发生在锅炉侧,而且这些事故的绝大多数是由锅炉启动过程中的问题所引起的。

所以火力发电厂锅炉的安全启动在整个电厂的运行中成为了一个极其重要的问题!

锅炉的启动状态一般按照停炉时间、金属温度进行划分,根据锅炉的启动状态可以选择定参数启动还是滑参数启动。

对于自然循环锅炉来说,汽包和水冷壁在启动过程中的应力控制和运行工况尤其显得重要。

通过对自然循环锅炉的汽包在整个启动过程中热应力的分析、上下壁温差、内外壁温差造成的热应力以及汽包疲劳寿命的分析,得出了汽包应力的控制原则和预防措施。

针对汽包锅炉的水位控制情况,结合具体实例,分析了造成汽包水位波动大的原因并提出了具体预防汽包水位波动的措施。

对于锅炉水冷壁在启动过程中的温度、水力偏差以及局部传热恶化等运行工况从理论、实际运行经验等方面进行了分析研究,从而得出了水冷壁在机组启动过程中的保护措施。

 

关键词:

锅炉汽包水冷壁启动分析

目录

1.绪论1

1.1锅炉启动的概念1

1.2锅炉启动状态的划分1

1.3单元机组的启动方式1

1.3.1额定参数启动1

1.3.2滑参数启动1

1.4锅炉启动过程的安全经济性2

2.汽包启动过程分析及保护3

2.1汽包概述3

2.2汽包启动应力分析3

2.2.1汽包机械应力3

2.2.2汽包热应力4

2.2.2.1热应力的概念4

2.2.2.2锅炉启动过程中汽包的热应力4

2.2.2.3汽包上、下壁温差引起的热应力4

2.2.2.4汽包内、外壁温差引起的热应力5

2.2.2.5汽包附加应力5

2.2.2.6峰值应力5

2.3汽包低周疲劳破坏分析5

2.4启停过程中汽包壁的温差监视6

2.5锅炉启动过程中的汽包应力控制6

2.5.1控制汽包应力的安全原则6

2.5.2控制汽包启动应力的措施7

2.6汽包启动水位分析7

2.6.1概述7

2.6.2水位波动过大的原因分析8

2.6.3水位波动过大的防范措施8

3.水冷壁的启动分析及保护9

3.1水冷壁启动温度工况分析9

3.2水冷壁的水力偏差分析9

3.3水冷壁的局部传热恶化分析11

3.4水冷壁的启动保护11

4.结论13

致谢14

参考文献15

1.绪论

1.1锅炉启动的概念

发电厂锅炉的启动指从点火到带额定负荷或并入蒸汽母管的全过程。

启动过程是火力发电设备运行的重要操作阶段,要在保证设备安全的前提下尽量缩短启动过程所需时间,使之达到快速响应负荷能力,提高机组运行的经济性[1]。

1.2锅炉启动状态的划分

锅炉的启动方式和启动所需时间与锅炉的结构型式、容量、燃料的种类、电厂的热力系统、气候条件及选定的操作方式等有关[2]。

按照启动时机组的金属温度情况,锅炉启动分为冷态启动、温态启动和热态启动。

冷态启动是指锅炉在没有压力,且其温度与环境温度接近的情况下的启动。

热态启动是指锅炉在保持有一定压力,且温度高于环境温度下的启动。

温态启动是介于冷态和热态之间的一种启动方式。

启动方式的划分一般是依据汽轮机在启动时汽缸的金属温度水平进行的。

国内外各制造厂根据金属材料和设计、制造技术水平所取的温度界限也不尽相同。

如GE公司的划分方法为:

以汽轮机高压缸第一级金属温度的高低为依据,该温度在150~300℃之间,为温态启动;在300~430℃之间,为热态启动;430℃以上为极热态启动。

除此之外,也有按停炉时间来大体代表启动初金属温度状态的,如德国的BABCOCK机组,机组停用48小时后的启动为温态,停用8小时后的启动为热态,停用2小时后的启动为极热态[13]。

东方机组规定停机大于72小时为冷态,停炉10~72小时为温态,停炉小于10小时为热态,停炉小于1小时为极热态。

启动状态的划分有助于运行人员掌握机组各种状态下的启动特点。

如冷态启动时,机组温度水平低,为使其均匀加热,不至于产生较大的热应力,锅炉升温、升压及升速、升负荷都应缓慢进行。

而热态、极热态启动时,机组各部件处于较高的温度状态,为防止高温部件受到蒸汽冷却造成应力损伤,就必须尽快使工作参数达到机组部件的温度水平,此时锅炉进水、燃烧率控制、升速、升负荷都应明显加快,冲转参数也较高[1]。

1.3单元机组的启动方式

1.3.1额定参数启动

锅炉点火后,当蒸汽压力、温度升至一定值时,进行汽轮机挂闸、冲转,汽轮机从冲转到带额定负荷期间,主蒸汽阀门前的蒸汽参数始终保持为额定值。

这种启动方式的运行灵活性和经济性均较差,一般多用于母管制的小型机组上应用,现单元制运行的大型机组均已不采用这种启动方式[4]。

1.3.2滑参数启动

单元制机组通常采用滑参数启动,又称为联合启动。

在锅炉点火、蒸汽升压、升温的过程中,利用汽温、汽压的升高逐渐提高汽轮机的负荷。

在整个启动的过程中,主蒸汽阀门前的蒸汽参数随汽机的金属温度和负荷情况,逐渐升高最终达到额定参数。

滑参数启动优点:

1)启动过程中,蒸汽管道的暖管、汽轮机的启动与锅炉的升压同时进行,从而使整台机组的启动时间缩短,增加了运行调度的灵活性。

2)整台机组的加热过程是从较低的蒸汽参数开始的,各部件的受热膨胀比较均匀。

锅炉的水循环工况稳定,过热器得到良好的冷却。

同时,由于开始进入汽轮机的蒸汽压力和温度均较低,蒸汽的容积流量较大,容易充满汽轮机,而且流速也较大,汽轮机的各部件均匀快速的升温,不至于会产生过大的热应力。

3)启动过程经济性提高,特别是设置旁路系统的机组,启动过程中可回收工质及利用工质的热量,工质损失和燃料消耗减少,机组在启动过程中即可发出电能[1]。

1.4锅炉启动过程的安全经济性

锅炉的启动是一个传热、流动的极不稳定的复杂过程。

启动过程中,锅炉工质温度及各部件温度随时变化,由于受热不一致,且部件的不同部位温度不同,因而会产生热应力,甚至使部件损坏。

一般来说,部件越厚,在单侧受热时的内、外壁温差越大,热应力也越大。

汽包、过热器联箱、蒸汽管道和阀门等的壁厚均较大,所以在受热过程中必须妥善控制,尤其是汽包。

锅炉启动初期受热面内部工质的流动尚不正常,工质对受热面金属的冲刷和冷却作用是很差的,有的受热面内甚至在短时间内根本没有工质流过。

如果这时受热过强,金属壁温就有可能超过许用温度。

锅炉的水冷壁、过热器、再热器及省煤器均有可能超温。

因此,启动初期的燃烧过程应谨慎进行[8]。

炉膛爆燃也是启动过程中容易发生的事故,锅炉启动之初,燃料量少、炉温低、燃烧不完全且不易控制,极有可能燃烧不稳定导致灭火,一旦发生爆燃,将使设备受到严重损坏。

启动过程中所用燃料,除用于加热工质和部件外,还有一部分耗于排汽和放水,造成热损失和工质损失。

在低负荷燃烧阶段,过量空气和燃烧损失也较大,锅炉的运行效率要比正常运行时低得多。

总之,在锅炉启动过程中,既有安全问题也有经济问题,二者经常是矛盾的。

为保证受热面的安全,减小热应力,启动过程应尽可能较慢的升温升压,燃料量的增加也只能缓慢进行。

但势必延长启动时间,使锅炉在启动过程中消耗更多的燃料,降低了经济性。

锅炉启动的原则是在保证设备安全的前提下,尽可能缩短启动时间,减少启动燃料的消耗量,并使机组尽早带负荷[9]。

2.汽包启动过程分析及保护

2.1汽包概述

汽包是锅炉中体积最大、壁最厚的承压元件,以东方300MW机组锅炉为例,汽包承受工作压力18.5Mpa,对应饱和温度362℃,汽包的结构尺寸为外径2090㎜,厚度为145㎜。

汽包的主要作用有四个:

1)连接。

汽包将水冷壁、下降管、过热器及省煤器等各种直径不同、根数不同、用途不同的管子有机的连接在一起,起到了一个大联箱的作用。

2)汽水分离。

将由水冷壁蒸发受热面来的汽水混合物,经汽包内的汽水分离装置分离出来,进入过热器。

3)储水。

汽包是一较大的汽水分离容器,它的下半部贮存了一定容量的水,在锅炉运行中可以对给水流量变化起到缓冲作用,所以允许给水流量短时间内的少量波动,增加了锅炉运行的稳定性。

同时汽包中贮存的水还起到了缓冲压力波动的作用,当压力升高时,因对应饱和温度升高,汽包中的水贮存了一部分热量,从而使压力升高较缓慢;当压力降低时,对应饱和温度降低,汽包中的水释放了一部分热量,使压力降低较缓慢。

4)汽包中的连续排污装置、清洗装置能保持蒸汽品质,加药装置能进行汽包内处理,防止蒸发受热面结垢。

汽包内具有大量高压的饱和水和饱和蒸汽,其破裂而引起爆炸将是一种灾难性的事故。

同时,汽包在自然循环锅炉中地位重要,更换困难,若发生损坏,将会严重影响锅炉的安全经济运行。

因此,本章将会对在锅炉启动过程中汽包所出现的问题进行分析解决[10]。

2.2汽包启动应力分析

汽包启动应力是指锅炉启动过程中汽包壁的应力。

它主要由工质压力引起的机械应力、汽包壁温度不均引起的热应力以及汽包与内部介质重力等引起的附加应力组成。

汽包壁应力可分为主体膜应力和峰值应力两种。

峰值应力是汽包壁的局部应力,由汽包壁温度不均匀及结构等原因引起,它比主体膜应力大2~4倍。

峰值应力使汽包壁局部材料屈服,引起应力再分配,最大应力达到屈服极限,在静态时不构成破坏。

但是,对波动的峰值应力,到了一定的波动次数后,材料就会脆性破坏[11]。

2.2.1汽包机械应力

汽包的机械应力是指由汽包内的工质压力引起的金属应力,这个应力在任意点的三个方向均为拉应力,且均与汽包内压力成正比。

随着汽压的升高,汽包机械应力将会越来越大。

汽包的内、外直径之比都在0.85左右,属薄壁容器。

薄壁容器在内压力的作用下只是向外扩张而无其他变形。

故汽包的纵横断面上只有正应力而无剪应力。

汽包壁任一点有三个方向的应力,即沿圆筒切线方向的切向应力、沿圆筒轴线方向的轴向应力和沿圆筒直径方向的径向应力。

同时,汽包由焊接而制成,并在壁上开有很多小孔,从而使汽包壁的应力增大了许多。

2.2.2汽包热应力

2.2.2.1热应力的概念

金属部件的体积随着温度的升高而膨胀扩大,随着温度的下降而收缩减小。

如果金属部件的体积能随温度变化而自由变化,金属部件内就不会产生应力;但是当金属部件的体积变化受到约束时就会产生很大的应力。

通常,我们把由于金属部件之间存在着一定的温差所引起的应力称为热应力。

2.2.2.2锅炉启动过程中汽包的热应力

锅炉启动过程中工质温度逐渐升高,汽包被加热,在汽包的上半部分饱和蒸汽对内壁进行凝结放热,在下半部分锅水对内壁进行对流放热,凝结放热系数比对流放热系数大2~3倍,故汽包上壁温升高于下壁温升。

汽包温度较高的部位金属膨胀量大、温度较低的部位金属膨胀量小。

但汽包是一个整体,其各部分之间无相对位移的自由,因而汽包内壁受到压缩、外壁受到拉伸,汽包上壁受到压缩、下壁受到拉伸。

汽包被压缩的部分产生压缩热应力、被拉伸的部分产生拉伸热应力。

热应力又称温差应力,是由于不同部位金属在不同温度下其体积变化受到限制而产生的应力。

汽包启动热应力主要是由汽包的上、下壁温差和内、外壁温差引起的[12]。

2.2.2.3汽包上、下壁温差引起的热应力

在锅炉进水和锅炉升压过程中都将会出现汽包上、下壁温差。

锅炉进水时,水总是先与汽包下壁接触,然后逐渐升高与上壁接触。

这样壁温就是上低下高。

汽包下壁受压而上壁受拉。

汽包起压后,上、下壁温差转为上高下低。

这是因为汽包上部空间为汽、下部空间为水,都对汽包壁进行单向传热。

但蒸汽对汽包上壁的放热为凝结放热,而水对汽包下壁的放热为微弱的对流放热,放热系数差别很大,前者比后者要大2~3倍。

所以汽包上壁的受热要比下壁剧烈得多,使汽包上壁温度上升很快,因而造成汽包上、下壁产生温差。

升压速度越快,汽包上、下壁温差就越大。

汽包下壁的应力状态由受压转为受拉经历一次应力循环。

由于启停一次应力变化的幅值与最初的压应力有关,而应力循环幅值大小会影响汽包的低周疲劳寿命,所以启动前的进水应该限制进水的温度和时间,尽可能减小汽包上、下壁温差。

当汽包上部壁温高于下部壁温时,汽包有产生弯曲变形的倾向。

这时由于上壁温度高,膨胀量大,并力图拉着下壁一起膨胀;而下壁温度低,膨胀量小,并力图阻止上壁的膨胀。

因而汽包上壁受压缩应力,下壁则受拉伸应力。

但是,与汽包连接的很多管子将约束汽包的自由变形,这样就产生了很大的附加应力,严重时可能会使联箱、管子弯曲变形和管座焊缝产生裂纹。

为降低汽包上、下壁温差,国外有些锅炉在汽包结构上有所改进。

例如美国的CE公司、德国的BABCOCK公司在其设计生产的300MW、600MW级锅炉汽包内安装了与汽包同样长度的弧形衬板。

上升管汇集来的汽水混合物由汽包的中上部进入,经环形夹层向下流动,所以汽包上壁也有相当部分的面积与水接触,汽包上壁的冷凝放热影响相对减弱。

但是由于冲刷汽包上壁的水速较高,上、下壁温差还存在,但允许的饱和水温升率要大的多[13]。

2.2.2.4汽包内、外壁温差引起的热应力

汽包内、外壁温差出现于锅炉进水和锅炉升压的过程中。

进水时,热水只与汽包内壁接触,外壁接受内壁热流,故其温度低于内壁,从而产生汽包的内、外壁温差。

点火后随着汽压的上升,饱和温度也升高,同水和蒸汽接触的汽包内壁温度接近于饱和温度,但外壁温度的升高则受到金属导热及壁厚的限制,因而造成汽包内、外壁之间的温差。

锅炉在稳定运行时,由于汽包的导热系数很大,所以汽包壁内的温差很小,热应力也较小,可以忽略不计。

然而,锅炉在启停或变负荷过程中,由于汽包内的介质温度不断上升,故产生了较大的热应力。

汽包内壁温度高,膨胀受阻而承受压应力;外壁温度低,相对内壁力图收缩而承受拉应力。

并且,热应力的最大值出现在内、外壁表面处。

升压速度越快,汽包内、外壁温差及热应力就越大,且基本呈线性关系。

这是因为在很快的介质温升速度下,内壁热量未来的及传给外壁,饱和温度就又升高了,所以将引起更大的内、外壁温差。

由于汽包内的饱和温升始终伴随着升压过程,所以在整个升压过程中,汽包内外壁温差始终存在[15]。

汽包壁温差的最大值通常出现在启动之初。

其原因一是由于启动之初,水循环较弱,水的扰动较小,汽包下半部与几乎不动的水接触传热,从而使汽包下部金属温升慢;二是由于低压阶段压力不大的变化就会引起饱和温度很大的变化,即引起锅水和汽温产生较大的变化,使水、汽对汽包壁的放热量也相应发生较大的变化,加大了汽包的上下壁温差。

2.2.2.5汽包附加应力

汽包的附加应力是指汽包与内部介质重力引起的应力,其数值上与以上两种应力比较要小得多。

2.2.2.6峰值应力

锅炉升压过程中汽包应力有机械应力和热应力两种。

汽包内压力产生机械应力,汽包壁温不均产生热应力,还有附加应力,它们叠加后产生总应力,最大局部总应力点成为峰值应力。

汽包顶部机械应力和上下壁温差热应力方向相反,相互减弱;汽包下部机械应力和上下壁温差应力方向相同,相互增强。

再叠加内外壁温差引起的热应力及应力集中的作用,峰值应力常出现在大直径下降管孔附近。

启动过程汽包峰值应力的大小决定于汽包内压力、压力变动率及循环流速。

某1000t/h亚临界压力自然循环锅炉进行启停应力峰值试验表明,在控制汽包壁温差的情况下,汽包峰值应力在-325~+380Mpa之间变化。

其最大负应力出现在冷态启动的初期,最大正应力则出现在汽包压力的最高值区域。

汽包峰值应力是局部应力,当它超过材料的屈服极限时,将引起应力再分配,最大只能达到屈服极限,这在稳定压力下对强度是无害的,但在交变应力作用下,可能产生疲劳裂纹,并最终导致元件泄漏[10]。

2.3汽包低周疲劳破坏分析

汽包峰值应力超过材料屈服极限时,材料局部发生塑性变形,使断面上的应力重新分配,最大值不大于屈服极限。

汽包金属在远低于其抗拉强度的循环应力作用下,经过一定的循环次数后会产生疲劳裂痕以至破裂,这种现象称为低周疲劳破坏。

达到低周疲劳破坏的应力循环总次数称为寿命,运行中应力循环次数占寿命的百分数称为寿命损耗。

是否要对汽包进行低周疲劳分析,美国机械工程师协会(ASME)给出了一个临界值。

对于材料屈服极限小于552Mpa的汽包,应力循环次数超过1000次,都应对汽包进行低周疲劳分析。

关于应力循环次数有以下定义:

1)锅炉启动停运一个循环为一次。

2)压力波动范围在数值上超过设计压力值20%算一次。

3)汽包上任何相邻两点,因温度变化产生温差,不同温差值折算成次数,如下:

a.29~55℃,应力循环1次;b.56~83℃,应力循环2次;

c.84~139℃,应力循环4次;d.140~194℃,应力循环8次;

e.195~250℃,应力循环12次;f.>250℃,应力循环20次;

2.4启停过程中汽包壁的温差监视

为了保护汽包,在整个锅炉启动过程中必须不断监视汽包上下壁温差以及内外壁温差。

为此,在大型锅炉的汽包壁上,安装有若干组温度测点,以集中下降管外壁温度代替汽包下部的内壁温度。

在监护和控制温差时,按以下方法计算壁温差:

以最大的引出管外壁温度减去汽包上部外壁最小温度,差值就是汽包上部内外壁的最大温差;若减去汽包下集中下降管外壁最小温度,差值就是汽包上下内壁最大差值;同理,也可计算得到汽包下部内外壁温差。

有的锅炉还引入汽包的压力等数据对上述计算进行修正。

以前,国内机组对汽包上下壁温差

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 人文社科 > 广告传媒

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2