GP140563NB M2MOverview of the Physical Layer Design v2.docx

上传人:b****5 文档编号:14579790 上传时间:2023-06-24 格式:DOCX 页数:13 大小:221.48KB
下载 相关 举报
GP140563NB M2MOverview of the Physical Layer Design v2.docx_第1页
第1页 / 共13页
GP140563NB M2MOverview of the Physical Layer Design v2.docx_第2页
第2页 / 共13页
GP140563NB M2MOverview of the Physical Layer Design v2.docx_第3页
第3页 / 共13页
GP140563NB M2MOverview of the Physical Layer Design v2.docx_第4页
第4页 / 共13页
GP140563NB M2MOverview of the Physical Layer Design v2.docx_第5页
第5页 / 共13页
GP140563NB M2MOverview of the Physical Layer Design v2.docx_第6页
第6页 / 共13页
GP140563NB M2MOverview of the Physical Layer Design v2.docx_第7页
第7页 / 共13页
GP140563NB M2MOverview of the Physical Layer Design v2.docx_第8页
第8页 / 共13页
GP140563NB M2MOverview of the Physical Layer Design v2.docx_第9页
第9页 / 共13页
GP140563NB M2MOverview of the Physical Layer Design v2.docx_第10页
第10页 / 共13页
GP140563NB M2MOverview of the Physical Layer Design v2.docx_第11页
第11页 / 共13页
GP140563NB M2MOverview of the Physical Layer Design v2.docx_第12页
第12页 / 共13页
GP140563NB M2MOverview of the Physical Layer Design v2.docx_第13页
第13页 / 共13页
亲,该文档总共13页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

GP140563NB M2MOverview of the Physical Layer Design v2.docx

《GP140563NB M2MOverview of the Physical Layer Design v2.docx》由会员分享,可在线阅读,更多相关《GP140563NB M2MOverview of the Physical Layer Design v2.docx(13页珍藏版)》请在冰点文库上搜索。

GP140563NB M2MOverview of the Physical Layer Design v2.docx

GP140563NBM2MOverviewofthePhysicalLayerDesignv2

NBM2M-OverviewofthePhysicalLayerDesign

1Introduction

AtGERAN#62anewSIwasagreedtostudyCellularSystemSupportforUltraLowComplexityandLowThroughputInternetofThings[1].Twooptionswereenvisagedin[1]:

“anon-legacybaseddesign,and/orabackwardcompatibleevolutionofGSM/EDGE”.Thiscontributiondescribesthephysicallayerdesignof“Narrow-bandM2M(NBM2M)”,anon-legacybasedsolutionproposedbythesourcingcompaniesforCellularIoT.

2Overview

TosupportmassivenumberoflowthroughputMTCdeviceswithalimitednumberof200KHzresourceblocks(termed"RB"),eachRBisdividedintoalargenumberof“narrowband”physicalchannelswhichareindividuallymodulatedandpulse-shaped.ChannelizationisdoneinaFDMmanner,forboththeuplinkandthedownlink.

Withanarrow-bandchannelcoveragecanbesignificantlyimprovedthankstoamuchhigherpowerspectraldensity(PSD),especiallyintheuplink.Othertechniqueslikespreadingandrepetitionareemployedinboththeuplinkandthedownlinktofurtherextendthecoverage.

Thechannelspacingintheuplinkisafraction(e.g.1/3)ofthatinthedownlink.Thiscreatesmanymorephysicalchannelsintheuplinkthaninthedownlink.Withasignificantlyhighernumberofparalleluplinkdatatransmissions,theaggregateuplinktransmitpowerincreasesproportionally,andsodoestheachievableuplinkcapacity.Anotherconsiderationisthatthelowcostobjectiveimpliesalowuplinktransmitpower,hencethechannelspacingshouldbesufficientlylowtonotlimittheuplinkPSD.

UnlikeinGSM,thedurationofaburstisvariable,andaphysicalchannelisonlydefinedinthefrequencydomain,notinthetimedomain.Therearethreetypesofphysicalchannels:

physicalbroadcastandsynchronizationchannle(PBSCH),physicaldownlinksharedchannel(PDSCH)andphysicaluplinksharedchannel(PUSCH).ThePBSCHcarriessynchronizationsignalandbroadcastinformation.ThePDSCHcarriesdata,controlinformation,paging,signalling,etc.ThePUSCHcarriesdata,signalling,randomaccessmessage,etc.AphysicalchannelcarriesoneormoretypesofburstinthewayofTDMA.Thevariouskindofburstwillbedefinedinthefollowingsections.

Thebasestationoperatesinfullduplexmodeinordertomaximizenetworkcapacity.MTCdevicesoperateinhalfduplexmodetoreducetheRFcost.

3Channelization

3.1Downlink

Afrequencyresourceblockissub-dividedinto12downlinkphysicalchannels,withachannelspacingof15kHz.ThedownlinkchannelizationisillustratedinFigure1.

Figure1Downlinkchannelization

Abasestationsectormaybeallocateddownlinkchannelsfromoneormoreresourceblocks.Theassignedchannelsforeachbasestationsectordependonthecellfrequencyplanningandre-useschemethatisusedforthedeployment.

AtleastonedownlinkphysicalchannelperbasestationsectorisreservedforPBSCH.TheremainingdownlinkphysicalchannelsareusedforPDSCH.

AMTCdeviceisnotrequiredtoreceivemultipledownlinkchannelssimultaneously.AMTCdeviceshallbecapableofre-tuningitsreceiverfromonedownlinkphysicalchanneltoadifferentdownlinkphysicalchannel.

3.2Uplink

Afrequencyresourceblockissub-dividedinto36uplinkphysicalchannels,withachannelspacingof5kHz.Agivenbasestationsectormaybeassignedanysubsetoftheuplinkchannels,dependingonthefrequencyplanningandre-useschemethatisusedforthedeployment.

TheuplinkchannelizationforasingleresourceblockisillustratedinFigure2.

Figure2Uplinkchannelization

Abasestationsectormaybeallocateduplinkchannelsfromoneormoreresourceblocks.Theassignedchannelsforeachbasestationsectordependonthecellfrequencyplanningandre-useschemethatisusedforthedeployment.

Ifabasestationsectorisallocatedmultiplecontiguousuplinkphysicalchannels,thenitmaychoosetoallocate2,4or8contiguousuplinkphysicalchannelstothesameMTCdeviceforchannelbonding.Thisenableshigheruplinkdatarates(andpotentiallylowerpowerconsumption)forMTCdevicesthathavesufficientlinkbudget.

AMTCdeviceshallbecapableofre-tuningitstransmitterfromoneuplinkphysicalchanneltoadifferentuplinkphysicalchannel.

4Multipleaccessandtimestructure

TheaccessschemeisTimeDivisionMultipleAccess(TDMA)withvariabletimedurationinphysicalchannels.Thechannelspacingis15kHzfordownlinkand5kHzforuplink(withoutchannelbonding).Physicalchannel’scontentcontainsoneormultipletypesofbursts.

4.1Slot

SlotisthetimeunitbearingscheduledM2Mdatamappedfromhigher-layer.Oneslotlastsfor10ms.

4.2M-hyperframes,M-superframesandM-frames

AdiagrammaticrepresentationofallthetimeslotandframestructuresisinFigure3.

ThelongestrecurrenttimeperiodofthestructureiscalledM-hyperframeandhasadurationof20971520ms(or5h49mn31s520ms).

OneM-hyperframeissubdividedin4 096M-superframeswhichhaveadurationof5120ms(or5,12seconds).TheM-superframesarenumberedmodulothisM-hyperframe(M-superframenumber,orM-SFN,from0to4095).M-superframeisusedforDRX/DTXanditsM-SFNfrom0to4095allowstheminimumDRX/DTXperiod5120mswhilemaximumDRX/DTXperiodupto20971520ms.

OneM-superframeissubdividedin64M-frameswhichhaveadurationof80ms.TheM-framesarenumberedmodulothisM-superframe(M-framenumber,orM-FN,from0to63).M-frameisthetimeunitofbroadcastandsynchronizationinformationforPBSCH,alsoisthetimeintervalunitofperiodicdownlinkcontrolinformation(DCI)forPDSCH.

OneM-framecomprisingeightslotsandtheslotsarenumberedmodulothisM-frame(slotnumber,orSN,from0to7).SlotistheminimumschedulinggranularityforPDSCHandPUSCH.

Figure3TimestructureforM-hyperframes,M-superframesandM-frames

4.3Burststructure

Aburstisdefinedasthecontentofphysicalchannelwithavariabledurationofoneorseveralslots.Therearethreebursttypes:

1.SynchronizationandbroadcastburstinPBSCH.EachsynchronizationandbroadcastbursthasafixedlengthofoneM-frameduration.

2.DCIburstinPDSCH.EachDCIburstcontainstwoparts,thefixed-lengthpartandthevariable-lengthpart.Thereasonforavariablelengthisthattheschedulinginformationisvariabledependingonthenumberofusersbeingscheduled.Thelengthofviariable-lengthpartisindicatedinthefixed-lengthpart.

3Non-DCIburstinPDSCHandPUSCH,eachnon-DCIbursthavevariablelength.ThisisusedforrandomaccessaswellasdatatransmissioninPUSCH.Withalongsymbolduration(e.g.266.7usinthecaseof3.75KHzsymbolrate),theuplinksymboltimingisconsideredrobustenoughforrancomaccess.

Theburststructuresfornormalcoveragearesuggestedtobedefinedasfollows:

1.Abroadcastandsynchronizationburstlasts80ms,containingtwoparts:

broadcastinformationandsynchronizationsequence.AdiagrammaticrepresentationofonebroadcastandsynchronizationburststructureisinFigure4.

Figure4BroadcastandsynchronizationburststructureinPBSCH

2.Thefixed-lengthpartofaDCIburstlasts30ms(3slots).AdiagrammaticrepresentationofthisisinFigure5,wherepreamblesymbolsareusedforre-synchronizationwhentheMTCdevicewakesupaftershortDRX/DTX,pilotsymbolsareusedfordemodulation.Bothcanbeusedformeasurement.

Figure5Fixed-lengthpartofDCIBurstinPDSCH

3.Non-DCIburstinPDSCHorthevariable-partofaDCIbursthasavariabledurationandcontainsmultipleslots.Eachslothasatotaldurationof120symbolsandcontainsmultipleunitstructureA’s,eachcontainingafixednumberofpilotsymbolsanddatasymbols.AdiagrammaticrepresentationisinFigure6.

Figure6Variable-lengthpartofDCIBurstandnon-DCIburstinPDSCHwithunitstructureA

4.Anon-DCIburstinPUSCHhasavariabledurationandcontainsmultipleN-slots.EachN-slotcontainsNslots,whereNisapositiveintegerdependingonchannelbondingfactorBfordifferentuplinkchannelbandwidth.

EachN-slotcontainsmultipleunitstructureA’s(forPSKmodulation)orunitstructureB’s(forGMSKmodulation).Thedifferencebetweenthetwounitstructuresistheproportionofpilotsymbols.Adiagrammaticrepresentationofnon-DCIburstinPUSCHwithunitstructureAandBisinFigure7.

Figure7Non-DCIburstinuplinkwithunitstructureAandB

Thereasonfornotplacingallpilotsymbolsinthemiddleoftheburst(asinGSM)isthatnarrowbandtransmissionisverysensitivetodopplershiftandresidualfrequencyerror,andthescatteredpilotsymbolsfacilitatetrackingofchannelvariationinthereceiver.

ThepilotsymboloverheadforGMSKmodulationishigherthanthatforPSKmodulation.ItisbecauseGMSKneedsguardsymbolperiodforinherentsymbolISIcausedbyitsshapingfilter.

Eachburstforextendedcoverageisderivedfromburstfornormalcoveragebyspreading(atsymbollevel)andrepetition(atburstlevel).Burstlengthforextendedcoveragecanbecalculatedby:

whereSFandRFarethespreadingfactorandrepetitionfactor,respectively.Bothfactorscantakevaluesfrom{1,2,4,8,…}.

Synchonizationandbroadcastburstaredesignedtocaterfortheworstcoverageareas.DCIburstisdesignedtooutperformnon-DCIburstbyatleast3dBintermsofcoverage(withavalueofSF*RFbeingatleast2timeshigherthannon-DCIburst).

AdiagrammaticrepresentationofburstfornormalcoverageextendedbyspreadingandrepetitionoperationisinFigure8.

Figure8Burstspreadingandrepetitionforextendedcoverage

4.4DCIinterval

Downlinkcontrolinformation(DCI)occursperiodiclyintimewhi

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 哲学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2