PSA制氮机工作原理及工艺流程修改版.docx

上传人:b****6 文档编号:15689206 上传时间:2023-07-06 格式:DOCX 页数:15 大小:24.81KB
下载 相关 举报
PSA制氮机工作原理及工艺流程修改版.docx_第1页
第1页 / 共15页
PSA制氮机工作原理及工艺流程修改版.docx_第2页
第2页 / 共15页
PSA制氮机工作原理及工艺流程修改版.docx_第3页
第3页 / 共15页
PSA制氮机工作原理及工艺流程修改版.docx_第4页
第4页 / 共15页
PSA制氮机工作原理及工艺流程修改版.docx_第5页
第5页 / 共15页
PSA制氮机工作原理及工艺流程修改版.docx_第6页
第6页 / 共15页
PSA制氮机工作原理及工艺流程修改版.docx_第7页
第7页 / 共15页
PSA制氮机工作原理及工艺流程修改版.docx_第8页
第8页 / 共15页
PSA制氮机工作原理及工艺流程修改版.docx_第9页
第9页 / 共15页
PSA制氮机工作原理及工艺流程修改版.docx_第10页
第10页 / 共15页
PSA制氮机工作原理及工艺流程修改版.docx_第11页
第11页 / 共15页
PSA制氮机工作原理及工艺流程修改版.docx_第12页
第12页 / 共15页
PSA制氮机工作原理及工艺流程修改版.docx_第13页
第13页 / 共15页
PSA制氮机工作原理及工艺流程修改版.docx_第14页
第14页 / 共15页
PSA制氮机工作原理及工艺流程修改版.docx_第15页
第15页 / 共15页
亲,该文档总共15页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

PSA制氮机工作原理及工艺流程修改版.docx

《PSA制氮机工作原理及工艺流程修改版.docx》由会员分享,可在线阅读,更多相关《PSA制氮机工作原理及工艺流程修改版.docx(15页珍藏版)》请在冰点文库上搜索。

PSA制氮机工作原理及工艺流程修改版.docx

PSA制氮机工作原理及工艺流程修改版

第一篇:

PSA制氮机工作原理及工艺流程

PSA制氮机工作原理及工艺流程

一、基础知识1.气体知识

氮气作为空气中含量最丰富的气体,取之不竭,用之不尽。

它无色、无味,透明,属于亚惰性气体,不维持生命。

高纯氮气常作为保护性气体,用于隔绝氧气或空气的场所。

氮气(N2)在空气中的含量为78.084%(空气中各种气体的容积组分为:

N2:

78.084%、O2:

20.9476%、氩气:

0.9364%、CO2:

0.0314%、其它还有H

2、CH

4、N2O、O

3、SO

2、NO2等,但含量极少),分子量为28,沸点:

-195.8℃,冷凝点:

-210℃。

2.压力知识

变压吸附(PSA)制氮工艺是加压吸附、常压解吸,必须使用压缩空气。

现使用的吸附剂——碳分子筛最佳吸附压力为0.75~0.9MPa,整个制氮系统中气体均是带压的,具有冲击能量。

二、PSA制氮工作原理:

变压吸附制氮机是以碳分子筛为吸附剂,利用加压吸附,降压解吸的原理从空气中吸附和释放氧气,从而分离出氮气的自动化设备。

碳分子筛是一种以煤为主要原料,经过研磨、氧化、成型、碳化并经过特殊的孔型处理工艺加工而成的,表面和内部布满微孔的柱形颗粒状吸附剂,呈黑色,其孔型分布如下图所示:

碳分子筛的孔径分布特性使其能够实现O

2、N2的动力学分离。

这样的孔径分布可使不同的气体以不同的速率扩散至分子筛的微孔之中,而不会排斥混合气(空气)中的任何一种气体。

碳分子筛对O

2、N2的分离作用是基于这两种气体的动力学直径的微小差别,O2分子的动力学直径较小,因而在碳分子筛的微孔中有较快的扩散速率,N2分子的动力学直径较大,因而扩散速率较慢。

压缩空气中的水和CO2的扩散同氧相差不大,而氩扩散较慢。

最终从吸附塔富集出来的是N2和Ar的混合气。

碳分子筛对O

2、N2的吸附特性可以用平衡吸附曲线和动态吸附曲线直观表现出来:

由这两个吸附曲线可以看出,吸附压力的增加,可使O

2、N2的吸附量同时增大,且O2的吸附量增加幅度要大一些。

变压吸附周期短,O

2、N2的吸附量远没有达到平衡(最大值),所以O

2、N2扩散速率的差别使O2的吸附量在短时间内大大超过N2的吸附量。

变压吸附制氮正是利用碳分子筛的选择吸附特性,采用加压吸附,减压解吸的循环周期,使压缩空气交替进入吸附塔(也可以单塔完成)来实现空气分离,从而连续产出高纯度的产品氮气。

三、PSA制氮基本工艺流程:

PSA制氮机基本工艺流程示意图

空气经空压机压缩后,经过除尘、除油、干燥后,进入空气储罐,经过空气进气阀、左吸进气阀进入左吸附塔,塔压力升高,压缩空气中的氧分子被碳分子筛吸附,未吸附的氮气穿过吸附床,经过左吸出气阀、氮气产气阀进入氮气储罐,这个过程称之为左吸,持续时间为几十秒。

左吸过程结束后,左吸附塔与右吸附塔通过上、下均压阀连通,使两塔压力达到均衡,这个过程称之为均压,持续时间为2~3秒。

均压结束后,压缩空气经过空气进气阀、右吸进气阀进入右吸附塔,压缩空气中的氧分子被碳分子筛吸附,富集的氮气经过右吸出气阀、氮气产气阀进入氮气储罐,这个过程称之为右吸,持续时间为几十秒。

同时左吸附塔中碳分子筛吸附的氧气通过左排气阀降压释放回大气当中,此过程称之为解吸。

反之左塔吸附时右塔同时也在解吸。

为使分子筛中降压释放出的氧气完全排放到大气中,氮气通过一个常开的反吹阀吹扫正在解吸的吸附塔,把塔内的氧气吹出吸附塔。

这个过程称之为反吹,它与解吸是同时进行的。

右吸结束后,进入均压过程,再切换到左吸过程,一直循环进行下去。

制氮机的工作流程是由可编程控制器控制三个二位五通先导电磁阀,再由电磁阀分别控制八个气动管道阀的开、闭来完成的。

三个二位五通先导电磁阀分别控制左吸、均压、右吸状态。

左吸、均压、右吸的时间流程已经存储在可编程控制器中,在断电状态下,三个二位五通先导电磁阀的先导气都接通气动管道阀的关闭口。

当流程处于左吸状态时,控制左吸的电磁阀通电,先导气接通左吸进气阀、左吸产气阀、右排气阀开启口,使得这三个阀门打开,完成左吸过程,同时右吸附塔解吸。

当流程处于均压状态时,控制均压的电磁阀通电,其它阀关闭;先导气接通上均压阀、下均压阀开启口,使得这两个阀门打开,完成均压过程。

当流程处于右吸状态时,控制右吸的电磁阀通电,先导气接通右吸进气阀、右吸产气阀、左排气阀开启口,使得这三个阀门打开,完成右吸过程,同时左吸附塔解吸。

每段流程中,除应该打开的阀门外,其它阀门都应处于关闭状态。

二、变压吸附制氧变压吸附制氧,以沸石分子筛吸附剂为核心,根据吸附剂在较高压力下选择吸附氮气,未被吸附的氧气在吸附塔顶部聚集,作为产品气输出。

当处于吸附的吸附塔临近吸附饱和之前,原料空气停止进气,转而向另一只完成再生的吸附塔均压,随后泄压再生。

被均压的吸附塔引入原料空气开始吸附。

两只吸附塔如此交替重复,完成氧气生产的工艺过程。

工业用变压吸附制氧可采用加压吸附,常压解吸流程;超大气压真空解吸流程;穿透大气压真空解吸流程。

第二篇:

PSA制氮机工作原理及工艺流程

PSA制氮机工作原理及工艺流程

一、基础知识

1.气体知识

氮气作为空气中含量最丰富的气体,取之不竭,用之不尽。

它无色、无味,透明,属于亚惰性气体,不维持生命。

高纯氮气常作为保护性气体,用于隔绝氧气或空气的场所。

氮气(N2)在空气中的含量为78.084%(空气中各种气体的容积组分为:

N2:

78.084%、O2:

20.9476%、氩气:

0.9364%、CO2:

0.0314%、其它还有H

2、CH

4、N2O、O

3、SO

2、NO2等,但含量极少),分子量为28,沸点:

-195.8℃,冷凝点:

-210℃。

2.压力知识

变压吸附(PSA)制氮工艺是加压吸附、常压解吸,必须使用压缩空气。

现使用的吸附剂——碳分子筛最佳吸附压力为0.75~0.9MPa,整个制氮系统中气体均是带压的,具有冲击能量。

二、PSA制氮工作原理:

变压吸附制氮机是以碳分子筛为吸附剂,利用加压吸附,降压解吸的原理从空气中吸附和释放氧气,从而分离出氮气的自动化设备。

碳分子筛是一种以煤为主要原料,经过研磨、氧化、成型、碳化并经过特殊的孔型处理工艺加工而成的,表面和内部布满微孔的柱形颗粒状吸附剂,呈黑色

碳分子筛的孔径分布特性使其能够实现O

2、N2的动力学分离。

这样的孔径分布可使不同的气体以不同的速率扩散至分子筛的微孔之中,而不会排斥混合气(空气)中的任何一种气体。

碳分子筛对O

2、N2的分离作用是基于这两种气体的动力学直径的微小差别,O2分子的动力学直径较小,因而在碳分子筛的微孔中有较快的扩散速率,N2分子的动力学直径较大,因而扩散速率较慢。

压缩空气中的水和CO2的扩散同氧相差不大,而氩扩散较慢。

最终从吸附塔富集出来的是N2和Ar的混合气。

由这两个吸附曲线可以看出,吸附压力的增加,可使O

2、N2的吸附量同时增大,且O2的吸附量增加幅度要大一些。

变压吸附周期短,O

2、N2的吸附量远没有达到平衡(最大值),所以O

2、N2扩散速率的差别使O2的吸附量在短时间内大大超过N2的吸附量。

变压吸附制氮正是利用碳分子筛的选择吸附特性,采用加压吸附,减压解吸的循环周期,使压缩空气交替进入吸附塔(也可以单塔完成)来实现空气分离,从而连续产出高纯度的产品氮气。

三、PSA制氮基本工艺流程

空气经空压机压缩后,经过除尘、除油、干燥后,进入空气储罐,经过空气进气阀、左吸进气阀进入左吸附塔,塔压力升高,压缩空气中的氧分子被碳分子筛吸附,未吸附的氮气穿过吸附床,经过左吸出气阀、氮气产气阀进入氮气储罐,这个过程称之为左吸,持续时间为几十秒。

左吸过程结束后,左吸附塔与右吸附塔通过上、下均压阀连通,使两塔压力达到均衡,这个过程称之为均压,持续时间为2~3秒。

均压结束后,压缩空气经过空气进气阀、右吸进气阀进入右吸附塔,压缩空气中的氧分子被碳分子筛吸附,富集的氮气经过右吸出气阀、氮气产气阀进入氮气储罐,这个过程称之为右吸,持续时间为几十秒。

同时左吸附塔中碳分子筛吸附的氧气通过左排气阀降压释放回大气当中,此过程称之为解吸。

反之左塔吸附时右塔同时也在解吸。

为使分子筛中降压释放出的氧气完全排放到大气中,氮气通过一个常开的反吹阀吹扫正在解吸的吸附塔,把塔内的氧气吹出吸附塔。

这个过程称之为反吹,它与解吸是同时进行的。

右吸结束后,进入均压过程,再切换到左吸过程,一直循环进行下去。

制氮机的工作流程是由可编程控制器控制三个二位五通先导电磁阀,再由电磁阀分别控制八个气动管道阀的开、闭来完成的。

三个二位五通先导电磁阀分别控制左吸、均压、右吸状态。

左吸、均压、右吸的时间流程已经存储在可编程控制器中,在断电状态下,三个二位五通先导电磁阀的先导气都接通气动管道阀的关闭口。

当流程处于左吸状态时,控制左吸的电磁阀通电,先导气接通左吸进气阀、左吸产气阀、右排气阀开启口,使得这三个阀门打开,完成左吸过程,同时右吸附塔解吸。

当流程处于均压状态时,控制均压的电磁阀通电,其它阀关闭;先导气接通上均压阀、下均压阀开启口,使得这两个阀门打开,完成均压过程。

当流程处于右吸状态时,控制右吸的电磁阀通电,先导气接通右吸进气阀、右吸产气阀、左排气阀开启口,使得这三个阀门打开,完成右吸过程,同时左吸附塔解吸。

每段流程中,除应该打开的阀门外,其它阀门都应处于关闭状态。

第三篇:

PSA制氮机

杭州辰睿空分设备制造有限公司专业提供化工行业专用制氮机,产量从5-3000Nm3/h,纯度从95%--99.999%的氮气,可广泛应用于化工、电子、纺织、煤炭、石油、天然气、医药、食品、玻璃、机械、粉未冶金、磁性材料等行业。

PSA变压吸附制氮机参数氮气流量:

5-3000Nm3/h氮气纯度:

95-99.999%氮气压力:

0-0.6Mpa露点:

≤-40℃(常压下)

PSA变压吸附碳分子筛制氮机

一、PSA变压吸附碳分子筛制氮机工作原理

变压吸附法(简称PSA)是一种新的气体分离技术,其原理是利用分子筛对不同气体分子“吸附”性能的差异而将气体混合物分开。

它是以空气为原材料,利用一种高效能、高选择的固体吸附剂对氮和氧的选择性吸附的性能把空气中的氮和氧分离出来。

碳分子筛对氮和氧的分离作用主要是基于这两种气体在碳分子筛表面的扩散速率不同,较小直径的气体(氧气)扩散较快,较多进入分子筛固相。

这样气相中就可以得到氮的富集成分。

一段时间后,分子筛对氧的吸附达到平衡,根据碳分子筛在不同压力下对吸附气体的吸附量不同的特性,降低压力使碳分子筛解除对氧的吸附,这一过程称为再生。

变压吸附法通常使用两塔并联,交替进行加压吸附和解压再生,从而获得连续的氮气流。

二、PSA变压吸附碳分子筛制氮机工艺流程

原料空气经空压机压缩后进入后级空气储罐,大部分油、液态水、灰尘附着于容器壁后流到罐底并定期从排污阀排出,一部分随气流进入到压缩空气净化系统。

空气净化系统由冷干机及三支精度不同的过滤器及一支除油器组成,通过冷冻除湿以及过滤器由粗到精地将压缩空气中的液态水、油、及尘埃过滤干净,使压缩空气压力露点降到2~10℃,含油量降至0.001PPm,尘埃过滤到0.01μm,保证了进入PSA制氮机原料气的洁净。

净化后的空气经过两路分别进入两个吸附塔,通过制氮机上气动阀门的自动切换进行交替吸附与解吸,这个过程将空气中的大部分氮与少部分氧进行分离,并将富氧空气排空。

氮气在塔顶富集由管路输送到后级氮气储罐,并经流量计后进入用气点。

三、PSA变压吸附碳分子筛制氮机技术特点

1、原料空气取自自然,只需提供压缩空气和电源即可制氮气。

设备能耗低,运行成本费用少。

2、氮气纯度调整方便,氮气纯度只受氮气排气量的影响,普通制氮纯度在95%-99.99%之间任意调节;高纯度制氮机可在99%-99.999%之间任意调节。

3、设备自动化程度高,产气快,可无人值守。

启动、关机只需按一下按钮,开机10~15分钟内即可产氮气。

4、设备工艺流程简单,设备结构外形小,占地面积少,设备装置适应性强。

5、特殊气缸压紧装置,避免高压气流冲击导致分子筛粉化现象,行程超限时自动声光报警。

6、数显流量计带压力补偿、高精度的工业过程监控二次仪表,具有瞬时流量及累积计算的功能。

(可选配)

7、进口分析仪在线检测,高精度,免维护。

(可选配)

四、PSA变压吸附碳分子筛制氮机产品优势

经过多年的研发、试验与应用,我们在PSA制氮领域拥有多项独有的技术优势:

标准功能配置:

1、分子筛床层一次压紧报警、二次压紧自锁功能;

2、快速启动——冷/热启动功能;

3、各项参数在线显示,数据端口预留;

4、多功能综合报警(纯度、压力等);

5、不合格产品切断/排空(用户指定);

6、急停控制。

智能控制配置:

1、标准功能配置的全部各项功能;

2、PC功能——基于Windows的操作平台中,可实现基本PC操作;

3、触摸屏动态显示与储存;

4、模拟无纸记录仪;

5、三级密码保护(操作级/主管级/经理级),防止误操作;

6、运行参数在线调整;

7、维修保养三级提示——预告/提示/保护性自锁;

8、仪表校准提示;

9、数据集中数字显示与远传输送(宽带/拨号);

10、系统功能在线升级;

11、与DCS系统方便对接。

节能控制配置:

1、智能控制配置的全部各项功能;

2、自动屏蔽功能,有效防止外界环境对控制系统的干扰;

3、PDC功能(Pressure-DifferenceControl)——压差式节能控制功能;

4、VFC功能(VariantFrequencyControl)——变频式节能控制功能。

稳定控制配置:

1、节能控制配置的全部各项功能;

2、PID输出功能(ProportionIntegralDifferential)——稳定纯度及流量功能。

五、PSA变压吸附碳分子筛制氮机应用范围一.SMT行业应用充氮回流焊及波峰焊,用氮气可有效抑止焊锡的氧化,提高焊接润湿性,加快润湿速度减少锡球的产生,避免桥接,减少焊接缺陷,得到较好的焊接质量。

使用氮气纯度大于99.99或99.9%。

与国内外大部分充氮回流焊及波峰焊设备厂家合作,已为众多知名SMT电子厂家配套了数百套高性价比的变压吸附制氮机,在SMT行业拥有庞大的客户群,SMT行业占有率达90%以上。

二.半导体硅行业应用

半导体和集成电路制造过程的气氛保护,清洗,化学品回收等。

Weiton制造了全球首例用于半导体硅行业的专用变压吸附制氮机,成功的取代了液氮,该系统在香港已无间歇运行近两年。

三.半导体封装行业应用

用氮气封装、烧结、退火、还原、储存。

维通变压吸附制氮机协助业类各大厂家在竞争中赢得先机,实现了有效的价值提升。

四.电子元器件行业应用

用氮气选择性焊接、吹扫和封装。

科学的氮气惰性保护已经被证明是成功生产高品质电子元器件一个必不可少的重要环节。

五.化工、新材料行业行业应用

用氮气在化工工艺中创建无氧气氛,提高生产工艺的安全性,流体输送动力源等。

石油:

可应用于系统中管道容器等的氮气吹扫,储罐充氮、置换、检漏,可燃性气体保护,也应用于柴油加氢和催化重整。

六.粉末冶金,金属加工行业,热处理行业应用

钢、铁、铜、铝制品退火、炭化,高温炉窑保护,金属部件的低温装配和等离子切割等。

七.食品、医药行业行业应用主要应用于食品包装、食品保鲜、食品储存、食品干燥和灭菌、医药包装、医药置换气、医药输送气氛等。

八.其他使用领域

制氮机除了使用在以上行业以外,在煤矿、注塑、钎焊、轮胎充氮橡、橡胶硫化等众多领域也得到广泛使用。

随着科技的进步和社会的发展,氮气装置的使用领域也越来越广泛,现场制气(制氮机)以其投资省、使用成本低、使用方便等优点已经逐渐取代液氮蒸发、瓶装氮气等传统供氮方式。

杭州辰睿空分设备制造有限公司生产产品:

变压吸附制氮机,变压吸附制氧机,变压吸附液氮机,碳载氮气纯化设备,加氢氮气纯化设备,余热再生空气干燥机,无热再生空气干燥机,微热再生空气干燥机,移动式管道干燥器,组合式低露点压缩空气干燥机,冷冻式压缩空气干燥机,鼓风机再生空气干燥机,高效除油器,高效油水分离器,精密过滤器,粉尘精滤器,除菌过滤器,蒸汽过滤器,精密过滤器,活性碳过滤器,风冷型高效空气冷却器,水冷型高效空气冷却器。

第四篇:

PSA(变压吸附)制氮机

制氮机操作规程

一、开机操作

1、合上电气系统电源,打开电控箱上电源开关。

此时电源指示灯亮或触摸屏显示“运行状态”画面。

2、打开各冷却水阀,使空压机、冷干机、冷却水路畅通。

3、打开空气储罐下排污阀,排尽储罐内积水。

4、启动冷干机工作后,启动空压机工作。

5、按启动按钮或轻触“自动”、“启动”按钮位置,系统开始按程序运行。

6、当氮气压力开始上升后,全部打开氮气储罐出口阀,缓慢打开放空阀,将不合格氮气放空,将放空流量调节到额定输出氮气流量的50%。

7、将流量调节到要求输出流量的刻度上,观察氮气分析仪上显示的氮气纯度,看其是否逐步和稳定在要求的纯度上。

8、当压力、纯度、流量均达到要求后,关闭放空阀,转开供气阀,将流量调节至要求输出流量的刻度上,向使用点输送合格氮气。

二、停机操作

1、按停止键,制氮系统即自动停止运行,(按停止键时,最好选择在均压B=A结束时刻进行)。

2、关闭氮气供气阀门,并关闭氮气缓冲罐出口阀门,使制氮吸附系统内氮气保压。

3、停止空压机工作,然后停止冷干机工作。

4、关闭电控箱上电源开关,切断电源。

5、作一次各手动排污点的排污。

三、注意事项

1、在系统工作时,应观察A、B吸附塔工作过程中的吸附、均压压力、气源压力及氮气输出压力。

监视各压力表在吸附、解吸、均压时压力是否正常。

2、调压阀可调节输出氮气的压力,出厂时已根据用户要求压力调试好,在使用过程中,不要调节。

3、本厂配置的氮气流量计是按空气在标准状态(20℃,0.1MPa)流量来标定的,而实际使用中的测量氮气时的流量计处于工作状态,与流量计标定时的状态是不同的,因此,必须对流量进行压力、温度修正。

四、维护保养

1、冷干机和空压机下部的手动排污阀每1小时排污一次。

2、空气储罐排污阀每2小时排污一次。

3、每星期对冷干机、空压机散热片上的灰尘用干燥的压缩空气进行吹扫。

4、每个月检查各过滤器的压差表指针是否处绿色正常位置,同时检查下部排放污水中的含油情况,当油量过大时应及时检查空压机的保养情况。

5、当制氮机停用长期存放时,应将系统入口及出口阀门关严保压,防止吸附塔内碳分子筛受潮变质,最好定期三个月后启动一次制氮装置,使分子筛活化。

6、每6个月对氮气分析仪做一次校对,当仪表显示不准确时,及时更换同型号的传感器,运行二年需对仪表进行检修。

7、正常运行6000-8000小时,需及时更换过滤器滤芯。

8、运行一年后需要对电器部分、气动阀、电磁阀做一次检修(气动阀正常工作为100万次,电磁阀为150万次)。

第五篇:

深冷制氮与与PSA制氮机对比

深冷制氮与与PSA制氮机对比

随着工业的迅速发展,氮气在化工、电子、冶金、食品、机械等领域获得了广泛的应用,我国对氮气的需求量每年以大于8%的速度增加。

氮气的化学性质不活泼,在寻常的状态下表现为很大的惰性,不易与其他物质发生化学反应。

因此,氮气在冶金工业、电子工业、化工工业中广泛的用来作为保护气和密封气,一般保护气的纯度要求为99.99%,有的要求99.999%以上的高纯氮。

液氮是一个较方便的冷源,在食品工业、医疗事业以及畜牧业的精液贮藏等方面得到越来越普遍的应用。

在化肥工业生产合成氨时,合成氨的原料气—氢、氮混合气若用纯液氮洗涤精制,可使惰性气体的含量极微小,一氧化硫和氧的含量不超过20ppm。

纯净的氮气无法从自然界直接汲取,主要采用空气分离法。

空气分离法中包括:

深冷法、变压吸附法(PSA)、膜分离法。

二、PSA制氮机的工艺流程和设备简介

1、工艺流程简介

空气经空气过滤器清除灰尘和机械杂质后进入空气压缩机,压缩至所需压力,经严格的除油、除水、除尘净化处理,输出洁净的压缩空气,目的是确保吸附塔内分子筛的使用寿命。

装有碳分子筛的吸附塔共有二个,一个塔工作时,另一个塔则减压脱附。

洁净空气进入工作吸附塔,经过分子筛时氧、二氧化碳和水被其吸附,流至出口端的气体便是氮气及微量的氩和氧。

另一塔(脱附塔)使已吸附的氧气、二氧化碳和水从分子筛微孔中脱离排至大气中。

这样两塔轮流进行,完成氮氧分离,连续输出氮气。

变压吸附制取的氮气纯度为95%-99.9%,假如需要更高纯度的氮气需增加氮气净化设备。

变压吸附制氮机输出的95%-99.9%氮气进入氮气净化设备,同时通过一流量计添加适量的氢气,在净化设备的除氧塔中氢和氮气中的微量氧进行催化反应,以除去氧然后经水冷凝器冷却,汽水分离器除水,再通过干燥器深度干燥(两个吸附干燥塔交替使用:

一个吸附干燥除水,另一个加热脱附排水),得到高纯氮气,赣州川汇气体设备制造有限公司氮气纯度可达99.9995%。

三、深冷制氮的工艺流程和设备简介

1、深冷制氮的典型工艺流程:

整个流程由空气压缩及净化、空气分离、液氮汽化组成。

⑴空气压缩及净化

空气经空气过滤器清除灰尘和机械杂质后进入空气压缩机,压缩至所需压力,然后送入空气冷却器,降低空气温度。

再进入空气干燥净化器,除去空气中的水份、二氧化碳、乙炔及其它碳氢化合物。

⑵空气分离:

净化后的空气进入空分塔中的主换热器,被返流气体(产品氮气、废气)冷却至饱和温度,送入精馏塔底部,在塔顶部得到氮气,液空经节流后送入冷凝蒸发器蒸发,同时冷凝由精馏塔送来的部分氮气,冷凝后的液氮一部分作为精馏塔的回流液,另一部分作为液氮产品出空分塔。

由冷凝蒸发器出来的废气经主换热器复热到约130K进膨胀机膨胀制冷为空分塔提供冷量,膨胀后的气体一部分作为分子筛的再生和吹冷用,然后经消音器排入大气。

⑶液氮汽化

由空分塔出来的液氮进液氮贮槽贮存,当空分设备检修时,贮槽内的液氮进入汽化器被加热后,送入产品氮气管道。

深冷制氮可制取纯度≧99.999%的氮气。

四、深冷制氮与变压吸附制氮的技术经济比较

1、流程比较

从以上的论述中我们可以发现:

变压吸附制氮流程简朴,设备数量少,主要设备仅有空压机、空气干燥器、吸附制氮机和储气罐等。

而深冷制氮流程复杂,设备数量多,主要设备有空压机、空冷器、空气净化干燥器、换热器、膨胀机和精流塔等。

制氮机

2、产品种类和纯度比较

深冷制氮不仅可以生产氮气而且可以生产液氮,满意需要液氮的工艺要求,并且可在液氮贮槽内贮存,当出现氮气间断负荷或空分设备小修时,贮槽内的液氮进入汽化器被加热后,送入产品氮气管道满意工艺装置对氮气的需求。

深冷制氮的运转周期(指两次大加温之间的间隔期)一般为1年以上,因此,深冷制氮一般不考虑备用。

而变压吸附制氮只能生产氮气,无备用手段,单套设备不能保证连续长周期运行。

深冷制氮可制取纯度≧99.999%的氮气。

氮气纯度受到氮气负荷、塔板数量、塔板效率和液空中氧纯度等的限制,调节范围很小。

因此,对于一套深冷制氮设备其产品纯度基本是一定的,不便调节。

变压吸附制氮制取的氮气纯度一般在95%-99.9%范围内,假如需要更高纯度的氮气需增加氮气净化设备。

氮气纯度只受产品氮气负荷的影响,在其他条件不变情况下,氮气排出量越大,氮气的纯度就越低;反之则越高。

因此,对于一套变压吸附制氮设备只要负荷答应其产品纯度可以在90-99.9%之间任意调节。

3、运行控制比较

深冷法由于是在极低温度下进行的,设备在投入正常运行之前,必须有一个预冷启动过程,启动时间即从膨胀

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2