食品化学思考题答案.docx

上传人:b****7 文档编号:15938604 上传时间:2023-07-09 格式:DOCX 页数:30 大小:328.08KB
下载 相关 举报
食品化学思考题答案.docx_第1页
第1页 / 共30页
食品化学思考题答案.docx_第2页
第2页 / 共30页
食品化学思考题答案.docx_第3页
第3页 / 共30页
食品化学思考题答案.docx_第4页
第4页 / 共30页
食品化学思考题答案.docx_第5页
第5页 / 共30页
食品化学思考题答案.docx_第6页
第6页 / 共30页
食品化学思考题答案.docx_第7页
第7页 / 共30页
食品化学思考题答案.docx_第8页
第8页 / 共30页
食品化学思考题答案.docx_第9页
第9页 / 共30页
食品化学思考题答案.docx_第10页
第10页 / 共30页
食品化学思考题答案.docx_第11页
第11页 / 共30页
食品化学思考题答案.docx_第12页
第12页 / 共30页
食品化学思考题答案.docx_第13页
第13页 / 共30页
食品化学思考题答案.docx_第14页
第14页 / 共30页
食品化学思考题答案.docx_第15页
第15页 / 共30页
食品化学思考题答案.docx_第16页
第16页 / 共30页
食品化学思考题答案.docx_第17页
第17页 / 共30页
食品化学思考题答案.docx_第18页
第18页 / 共30页
食品化学思考题答案.docx_第19页
第19页 / 共30页
食品化学思考题答案.docx_第20页
第20页 / 共30页
亲,该文档总共30页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

食品化学思考题答案.docx

《食品化学思考题答案.docx》由会员分享,可在线阅读,更多相关《食品化学思考题答案.docx(30页珍藏版)》请在冰点文库上搜索。

食品化学思考题答案.docx

食品化学思考题答案

食品化学思考题答案

第一章绪论

1、食品化学定义及研究内容?

食品化学定义:

论述食品得成分与性质以及食品在处理、加工与贮藏中经受得化学变化。

研究内容:

食品材料中主要成分得结构与性质;这些成分在食品加工与保藏过程中产生得物理、化学、与生物化学变化;以及食品成分得结构、性质与变化对食品质量与加工性能得影响等。

第二章水

1名词解释

(1)结合水

(2)自由水(3)等温吸附曲线(4)等温吸附曲线得滞后性(5)水分活度

(1)结合水:

存在于溶质及其她非水组分临近得水,与同一体系中“体相”水相比,它们呈现出低得流动性与其她显著不同得性质,这些水在-40℃下不结冰。

(2)自由水:

食品中得部分水,被以毛细管力维系在食品空隙中,能自由运动,这种水称为自由水。

(3)等温吸附曲线:

在恒温条件下,以食品含水量(gH2O/g干物质)对Aw作图所得得曲线。

又称等温吸湿曲线、等温吸着曲线、水分回吸等温线、

(4)如果向干燥样品中添加水(回吸作用)得方法绘制水分吸着等温线与按解吸过程绘制得等温线并不相互重叠,这种不重叠性称为滞后现象。

(5)水分活度:

食品得水蒸汽分压(P)与同条件下纯水蒸汽压(P0)之比。

它表示食品中水得游离程度,水分被微生物利用得程度。

也可以用相对平衡湿度表aw=ERH/100。

2、结合水、自由水各有何特点?

答:

结合水:

-40℃不结冰,不能作为溶剂,100℃时不能从食品中释放出来,不能被微生物利用,决定食品风味。

自由水:

0℃时结冰,能作为溶剂,100℃时能从食品中释放出来很适于微生物生长与大多数化学反应,易引起Food得腐败变质,但与食品得风味及功能性紧密相关。

3、分析冷冻时冰晶形成对果蔬类、肉类食品得影响。

答:

对于肉类、果蔬等生物组织类食物,普通冷冻(食品通过最大冰晶生成带得降温时间超过30min)时形成得冰晶较粗大,冰晶刺破细胞,引起细胞内容物外流(流汁),导致营养素及其它成分得损失;冰晶得机械挤压还造成蛋白质变性,食物口感变硬。

速冻,为了不使冷冻食品产生粗大冰晶,冷冻时须迅速越过冰晶大量形成得低温阶段,即在几十分钟内越过-3、9~0℃。

冷冻食品中得冰晶细小则口感细腻(冰淇淋),冰晶粗大则口感粗糙。

4、水与溶质相互作用分类:

偶极—离子相互作用,偶极—偶极相互作用,疏水水合作用,疏水相互作用。

浄结构形成效应:

在稀盐溶液中,一些离子具有净结构形成效应(溶液比纯水具有较低得流动性),这些离子大多就是电场强度大,离子半径小得离子,或多价离子。

如:

Li+,Na+,Ca2+,Ba2+,Mg2+,Al3+,F-,OH-,等。

主要就是一些小离子或多价离子,具有强电场,所以能紧密地结合水分子。

那么这些离子加到水中同样会对水得净结构产生破坏作用,打断原有水分子与水分子通过氢键相连得结构,另一方面,正因为它与水分子形成得结合力更强烈,远远超过对水结构得破坏,就就是说正面影响超过负面影响,整体来说,使水分子与水分子结合得更紧密,可以想象,这些水流动性比纯水流动性更差,因为拉得更紧,堆积密度更大。

浄结构破坏效应:

在稀盐溶液中一些离子具有净结构破坏效应(溶液比纯水具有较高得流动性),这些离子大多为大离子或单价离子,产生弱电场,如:

K+,Rb+,Cs+,NH4+,Cl-,Br-,I-,NO3-,BrO3-,IO3-,ClO4-等。

这些就是电场强度较弱得大离子或单价离子,它与水分子之间形成得作用力,比方直径越大,与周围水分子结合越松散,不那么紧密,对水分子破坏作用更大于对水分子正面作用,入不敷出,破坏更厉害,总体上对水得净结构产生破坏效应,水分子结合比原来水分子结合来得松散,水分子受到束缚更少了,流动性更强。

疏水相互作用推动力:

就是水与这些疏水物质尽可能得少接触,尽可能减少接触面积所导致得。

疏水相互作用对一些大分子得结构与构像就是非常重要得。

例如蛋白子得疏水相互作用。

5水分活度与温度得关系

①冰点以下,㏑aw=-K△H/RT,T↑则aw↑,㏑aw-1/T为一直线。

水分含量增加时,T对aw得影响程度提高。

②温度对aw得影响在冰点下远大于在冰点以上(冰冻冷藏得依据),温度下降,导致aw下降很快,有利于降低温度,抵抗败坏;T↑,不利于水与非水组分得相互作用。

③在试样得冰点此直线出现明显得转折。

6等温吸湿线定义、三个区域含义。

答、定义:

在恒温条件下,以食品含水量(gH2O/g干物质)对Aw作图所得得曲线。

区Ⅰ:

化合水。

区Ⅱ:

多分子层水。

区Ⅲ:

自由水或体相水

7滞后现象定义,滞后现象产生得原因。

答、定义:

如果向干燥样品中添加水(回吸作用)得方法绘制水分吸着等温线与按解吸过程绘制得等温线并不相互重叠,这种不重叠性称为滞后现象。

原因:

解吸过程中一些水分与非水溶液成分作用而无法放出水分。

不规则形状产生毛细管现象得部位,欲填满或抽空水分需不同得蒸汽压(要抽出需P内>P外,要填满则需P外>P内)。

解吸作用时,因组织改变,当再吸水时无法紧密结合水,由此可导致回吸相同水分含量时处于较高得aw。

8降低水分活度可以提高食品得稳定性,其机理就是什么?

如何减少水分活度?

机理:

降低水分活度,使食品中许多可能发生得化学反应、酶促反应受到抑制。

A、很多化学、生物反应必须有水分子参加才能进行,就必须有足够得自由水,那么降低水分活度就减少了参加反应得自由水得数量,化学反应得速度也就变慢。

B、许多以酶为催化剂得酶促反应,水除了起着一种反应物得作用外,还能作为底物向酶扩散得输送介质,且通过水化促使酶与底物活化

一般可用干燥、盐腌与糖渍等方法减少水分活度。

第3章碳水化合物

1、单糖、双糖与低聚糖得食品性质及功能?

答、单糖双糖得食品性质与功能

1)甜度

各种单糖或双糖得相对甜度为:

蔗糖1、0,果糖1、5,葡萄糖0、7,半乳糖0、6,麦芽糖0、5,乳糖0、4。

2)溶解度与渗透压及抗氧化性。

一定浓度得糖溶液,具有一定得渗透压。

渗透压高,则抑菌效果强。

糖溶液中溶氧减少,有抗氧化作用(护色,保香)。

3)结晶性

结晶能力:

Glu>Suc>转化糖,果糖>麦芽糖

晶体小晶体大难结晶

>淀粉糖浆,果葡糖浆

不结晶,能防止蔗糖结晶

硬糖生产不能单用蔗糖。

因为,蔗糖结晶大,脆,易破碎,产品缺乏韧性。

一般在生产硬糖时添加一定量得(30%-40%)得淀粉糖浆。

冷冻食品,使用淀粉糖浆可阻止含水蔗糖晶体形成,使产品组织细腻,口感好。

4)亲水性

糖类为多羟基酮或醛及其衍生物或缩合物,糖分子中得羟基能与H2O形成氢键,表现出亲水性。

糖得亲水性在食品中表现为吸湿性(糖在较高空气湿度环境中吸收水分得能力)与保湿性(糖在较低空气湿度环境中对食品中水分得保持能力)。

5)旋光性

6)冰点降低

当在水中加入糖时会引起溶液得冰点降低。

糖得浓度越高,溶液冰点下降得越大。

相同浓度下对冰点降低得程度,

葡萄糖>蔗糖>淀粉糖浆。

7)褐变风味

Glu与不同氨基酸加热,产生不同风味,例

Glu+甘氨酸焦糖香

Glu+谷氨酰胺巧克力味

Glu+脯氨酸烤面包味

Glu+甲硫氨酸马铃薯香味

8)粘度

粘度:

单糖<双糖<寡糖<多糖

Glu,Fru<Suc<淀粉糖浆

水果罐头、肉类罐头、果汁饮料:

添加淀粉糖浆获得适度得粘稠感。

低聚糖:

低聚糖得功能

(1)赋予风味

麦芽酚、乙基麦芽酚、异麦芽酚有强烈得焦糖香,也就是食品中常用得风味(甜味)增强剂。

(2)特殊功能

增加溶解性:

如环状糊精,麦芽糊精

稳定剂:

糊精作固体饮料得增稠剂与稳定剂

(3)保健功能

低聚(果)糖可促进小孩肠道双歧杆菌生长,促消化;低能量或零能量;低龋齿性。

1、简述β-环状糊精得结构特点及其用途。

应用:

①医学

如用环状糊精包接前列腺素得试剂、注射

剂,卞基青霉素-β-环糊精。

②农业

应用在农药上。

环糊精包接稳定化,某些农药则可耐贮存及提高杀虫效力。

③食品行业

做增稠剂,稳定剂,提高溶解度(做乳化剂),掩盖异味等。

3、为了使某种面粉制作得面条具有一定吸水性(不存在硬芯),可以采取哪些措施?

并说明理由。

加入吸湿剂,吸湿剂应该含离子、离子基团或含可形成氢键得中性基团(羟基,羰基,氨基,亚氨基,酰基等),即有可与水形成结合水得亲水性物质。

如:

多元醇:

丙三醇、丙二醇、糖

无机盐:

磷酸盐(水分保持剂)、食盐

动、植物、微生物胶:

卡拉胶、琼脂

4、糖苷相关性质?

答:

糖苷就是由单糖或低聚糖得半缩醛羟基与另一个分子中得-OH、-NH2、-SH(巯基)等发生缩合反应而得得化合物。

糖苷得相关性质有:

①无变旋现象因为分子中没有半缩醛羟基

②无还原性

③酸中水解,碱中可稳定存在

④吡喃糖苷环比呋喃糖苷稳定

5、多糖有哪些食品性质与功能?

答:

多糖得食品性质功能:

提供硬度、脆性、紧密度、稠度、黏度、黏附力、胶凝性、口感等。

一、多糖得水溶性、

有得多糖常通过分子间氢键,形成数量多而稳定、水分子难以渗入得区域,称结晶区。

此类多糖不溶于水、有得多糖其分子间不形成结晶区,而就是形成分子排列松散、杂乱、高度水化得区域,称无定形区。

此类多糖能溶于水。

二、多糖得胶凝作用

每个多糖分子参与形成两个或两个以上得结晶区,每个结晶区则仅仅就是由两个链段形成,缔合成复杂得三维网络结构,大量得水分散在三维网络中,此体系即为凝胶。

常见得多糖凝胶食品有:

果冻,布丁等

3、多糖溶液得粘度

粘度就是体系摩擦阻力得表现。

体系中溶质分子占有得有效体积越大,则流动时得分子对后面得分子得阻力越大,体系得粘度越高。

影响多糖粘度得因素有:

(1)多糖分子得形状、大小。

(2)分子所带电荷。

6、直链淀粉与支链淀粉得物理化学性质比较?

类型

分子构成

分子形态

溶解性

与I2反应

糊化性

老化性

由葡萄糖

以α-1,4

苷键缩合

而成

直链卷曲呈

螺旋状无分

支结构

不溶于冷水可溶于热水

呈蓝色

不易糊化

易老化

由葡萄糖α-1,4与α-1,6苷键缩合而成

聚合体近似

球状,具有

树枝状结构,

每个分支卷

曲呈螺旋状

不溶于水只在热水中溶胀

呈紫红色

易糊化

不易老化

7、什么就是淀粉得糊化与老化?

本质就是什么?

各有哪些影响因素?

如何影响?

答:

淀粉得糊化:

将淀粉混合于水中并加热,达到一定温度后,则淀粉粒溶胀、崩溃,形成粘稠得均匀得透明糊溶液,称淀粉得糊化(α-化)。

本质就是淀粉颗粒中有序态(晶态)与无序态(非晶态)得淀粉分子之间得氢键断裂,分散在水中形成亲水性胶体溶液。

影响因素有:

①结构:

直链淀粉不易糊化。

②Aw:

Aw提高,糊化程度提高。

③糖:

高浓度得糖水分子,使淀粉糊化受到抑制。

盐:

高浓度得盐使淀粉糊化受到抑制;低浓度得盐存在,对糊化几乎无影响。

但对马铃薯淀粉例外,因为它含有磷酸基团,低浓度得盐影响它得电荷效应。

脂类:

脂类可与淀粉形成包合物,即脂类被包含在淀粉螺旋环内,不易从螺旋环中浸出,并阻止水渗透入淀粉粒。

酸度:

一般淀粉在碱性中易于糊化,且淀粉糊在中性至碱性条件下黏度也就是稳定得。

淀粉得老化:

热得淀粉糊冷却时,淀粉分子间会重新形成结晶区,溶解度逐渐减少甚至产生不溶性沉淀,这种现象称为淀粉得老化(β-化)。

本质就是糊化后得分子又自动排列成序,形成高度致密得、结晶化得、不溶解性分子微束。

影响因素有:

(1)淀粉得种类。

直链淀粉比支链淀粉易于老化

(2)温度。

2~4℃,淀粉易老化;>60℃或<-20℃,不易发生老化;

(3)含水量。

含水量30~60%,易老化。

含水量过低(10%)或过高均不易老化;

(4)共存物得影响。

表面活性剂可抗老化,如脂肪甘油脂,糖脂,磷脂。

多糖、蛋白质等亲水大分子,可与淀粉竞争水分子及干扰淀粉分子平行靠拢,从而起到抗老化作用。

(5)糊化程度。

糊化程度越高,淀粉颗粒解体越彻底,则重新凝聚而老化得速度越慢。

8、试从结构上解释为什么支链淀粉比直链淀粉易糊化,糊化得本质就是什么?

在一定温度下,淀粉粒在水中发生膨胀,形成粘稠得糊状胶体溶液,这一现象称为淀粉得糊化,由于支链淀粉得结构不如直链淀粉紧密,处于无序态得分子比直链淀粉多,水更容易进入微晶束,容易发生膨胀,形成粘稠得糊状胶体溶液。

淀粉糊化本质就是水进入微晶束,折散淀粉分子间得缔合状态,使淀粉分子失去原有得取向排列,而变为混乱状态,即淀粉粒中有序及无序态得分子间得氢键断开,分散在水中成为胶体溶液。

9、果胶凝胶形成得条件与机制就是什么?

受哪些因素影响?

如何影响?

答、

高甲氧基果胶(低pH与高糖浓度)

条件:

脱水剂(蔗糖)含量58-75%,

pH2、0-3、5,果胶含量<1%,可以形成凝胶。

机制:

脱水剂使高度含水得果胶分子脱水以及电荷中与而形成凝集体。

低pH可阻止羧基离解,使高度水合作用与带电得羧基转变为不带电荷得分子,从而使分子间斥力减小,分子水合作用降低,结果有利于分子间得结合与三维网络结构得形成。

高糖浓度,由于糖争夺水分子,致使中性果胶分子溶剂化程度大大降低,有利于形成分子间氢键与凝胶。

低甲氧基果胶(M2+)

条件:

二价(M2+)金属离子

蔗糖(10%-20%)改善凝胶得质地,否则容易脆裂,弹性小

机制:

在果胶分子间形成交联键

影响凝胶强度得因素:

凝胶强度与分子量成正比;

凝胶强度与酯化程度成正比;

酯化程度越大,凝胶强度越大。

10、常见食品胶有哪几类?

如黄原胶

葡聚糖(右旋糖酐),黄杆菌胶,茧酶胶,环状糊精,黄原胶。

第4章脂类

1、甘油酯得命名方法?

2、HLB定义及乳化剂选择原则?

表面活性剂都就是两亲分子,由于亲水与亲油基团得不同,很难用相同得单位来衡量,所以Griffin提出了用一个相对得值即HLB值来表示表面活性物质得亲水性。

对非离子型得表面活性剂,HLB得计算公式为:

乳化剂选择原则:

HLB为3—6得乳化剂有利于形成W/O型乳状液

HLB为8—18得乳化剂有利于形成O/W型乳状液

两种乳化剂混合使用时,其HLB值具有加与性

复合乳化剂得乳化稳定性高于单一乳化剂

1、油脂酸败得三种类型?

答、油脂酸败包括氧化型酸败,水解型酸败,酮型酸败。

氧化型酸败包括自动氧化与光敏氧化。

自动氧化就是指活化得不饱与脂肪酸与基态氧3O2发生得自由基反应。

分为引发期,增殖期,与终止期三个阶段。

光敏反应就是Sen(光敏剂)引发得脂类氧化,就是不饱与双键与单重态氧1O2直接发生得氧化反应。

含低级脂肪酸较多得油脂,其残渣中存在有酯酶或污染微生物所产生得酯酶,在酶得作用下,油脂水解生成游离得低级脂肪酸(含C10以下)与甘油。

游离得低级脂肪酸,如丁酸、己酸、辛酸等具有特殊得汗臭味与苦涩味,这种现象称为油脂水解型酸败。

油脂水解产生得游离饱与脂肪酸,在一系列酶得催化下氧化生成有怪味得酮酸与甲基酮,称为酮型酸败(β-氧化作用)。

2、试述油脂自动氧化机理,并说出影响氧化速度得因素?

食品生产中采取哪些措施可降低油脂自动氧化得速度?

答:

油脂得不饱与脂肪酸在空气中易发生自动氧化,氧化产物进一步分解为低级脂肪酸、醛、酮、(氢过氧化物、环氧化物、二聚物等)产生恶劣臭味,这种现象叫油脂得自动氧化。

反应机理:

(1)引发(慢)

RH光、热金属离子R·+H·

(2)增殖(快)

R·+3O2-→ROO·

ROO·+RH-→ROOH+R·

(3)终止

R·+R·-→RR

R·+ROO·-→ROOR

ROO·+ROO·-→ROOR+O2

RO·+R·-→ROR

影响油脂自动氧化速度得因素有:

(1)脂肪酸组成

A、V双键多>V双键少>V双键无

B、V共轭>V非共轭

(2)温度:

温度升高,则V升高,例:

起酥油21~63℃内每升高16℃,速度升高2倍

(3)光与射线:

光促进产生游离基、促进氢过氧物得分解,(β、γ射线)辐射食品,辐射时产生游离基,V增加,在贮存期易酸败。

所以,油脂食品宜避光贮存、

(4)氧与表面积V∝A脂V∝pO2

(5)水分影响复杂AW=0、3~0、4V小AW=0、7~0、85V大

(6)金属离子重金属离子就是油脂氧化酸败得催化剂,A可加速氢过氧化物分解B直接作用于未氧化物质C促进氧活化成单重态氧与自由基

措施:

为了保证食品得安全性,食品生产中可以采取一定措施:

选择稳定性高得油;低温油炸;添加抗氧化剂能有效防止与延缓油脂得自动氧化作用得物质;清去食品微粒、清洗设备。

酚类化合物,可以提供一个氢原子与游离基作用,生成新得酚游离基,它得稳定性很高,不能产生游离基链反应,终止了脂肪游离基氧化反应,所以可以抑制脂肪得氧化。

3、写出油脂得自动氧化机理,说明酚类抗氧化剂为何能抑制脂肪氧化?

答、油脂得不饱与脂肪酸在空气中易发生自动氧化,氧化产物进一步分解为低级脂肪酸、醛、酮、(氢过氧化物、环氧化物、二聚物等)产生恶劣臭味,这种现象叫油脂得自动氧化。

反应机理:

(1)引发(慢)

RH光、热金属离子R·+H·

(2)增殖(快)R·+3O2-→ROO·

ROO·+RH-→ROOH+R·

(3)终止R·+R·-→RR

R·+ROO·-→ROOR

ROO·+ROO·-→ROOR+O2

RO·+R·-→ROR

酚类抗氧化剂抑制脂肪氧化得模式:

AH+ROO·→ROOH+A·或AH+R·→RH+A·,抗氧化剂得自由基A·因结构上得特点而比较稳定,就是没有活性得,它不能引起一个链反应得传递,却参与一些终止反应,例如:

A·+A·→AAA·+ROO·→ROOA

4、过氧化值及其测定原理?

5、试述油脂精制得步骤与原理。

答、

 6、油脂氢化得作用就是什么?

答、可以使液体油脂转变成更适合于特殊用途得半固体脂肪或可塑性脂肪,如起酥油与人造黄油,还能提高熔点与氧化稳定性,改变三酰甘油得稠度与结晶性。

7、反复使用得油炸油品质降低表现在哪些方面?

为什么?

长期食用有何危害?

答、

 8、代脂肪定义及作用,举例?

  答、定义:

能代替脂肪功能得物质,能使食品具有类似脂肪得结构及口感,但不产生热量得一类物质。

作用举例:

第5章蛋白质

1、蛋白质得食品功能性质主要包含哪几个方面?

请分别进行介绍。

蛋白质得食品功能性质(Functionality)就是指除营养价值外,对食品需宜特性有利得蛋白质得物理化学性质,如凝胶、溶解、泡沫、乳化、粘度等在食品中起着十分重要得性质。

蛋白质得食品功能性质主要分为四个方面:

(1)水合性质取决于蛋白质同水之间得相互作用。

如吸水性、持水性、湿润性、溶胀性、粘附性、分散性、粘度、溶解度等。

(2)结构性质与蛋白质分子之间得相互作用有关,如沉淀、胶凝、面团形成、组织化等。

(3)表面性质蛋白质在极性不同得两相之间所产生得作用,如气泡性能、乳化作用等。

(4)感官性质就是由于蛋白质作用于人得感官而产生,如爽滑度、咀嚼性、混浊度、色泽、气味等。

2、蛋白质得碱提酸沉原理?

多数食品中得蛋白质属于酸性蛋白,即蛋白质分子中得天冬氨酸与谷氨酸残基得总与大于赖氨酸、精氨酸与组氨酸残基得总与,因此,它们在pH4~5(等电点)具有最低溶解度,在碱性pH(pH8~9)具有最高溶解度。

蛋白质得碱提酸沉即就是利用此原理。

3、蛋白质得胶凝作用?

蛋白质得胶凝作用就是指变性蛋白质分子聚集形成得有序得网络结构得过程,其中含有大量得水。

例如:

豆腐熟鸡蛋酸奶等

蛋白质得胶凝与蛋白质得缔合、聚集、聚合、沉淀、絮凝与凝结等有区别:

Pr得缔合就是指在亚基或分子水平上发生得变化;聚合或聚集一般包括大得复合物得形成;絮凝就是指没有蛋白质变性时得无序聚集反应;凝结就是变性蛋白质得无序聚集反应。

4、小麦面粉为什么能形成面团?

面粉中添加溴酸钾、脂肪氧化酶分别有何作用?

为什么?

答:

由于小麦面粉中含有面筋蛋白质,有醇溶(麦胶)蛋白质,含有-S-S--SH,有麦谷蛋白质,含有-S-S--SH,由于二硫键得交联而形成网络结构。

添加溴酸钾可以使-SH发生氧化生成二硫键-S-S-、从而增加面筋筋力。

脂肪氧化酶可以使脂肪发生氧化,生成过氧化物,从而使-SH发生氧化生成二硫键-S-S-、从而增加面筋筋力。

5、在食品加工过程中,热处理对蛋白质得营养价值有那些有利与不利得影响?

(1)有利得影响:

大多数蛋白质经过热处理后营养价值都得到了提高,适当得热处理后使蛋白质变性,提高了蛋白质得消化率与氨基酸得生物有效性;加热还可以使一些酶失活,从而提高了食品得贮藏性能,且有利提高食品得品质;植物蛋白中存在得大多数天然蛋白质毒素或抗营养因子都可通过加热使之变性或钝化。

(2)不利得影响:

对蛋白质或蛋白质食品进行热处理时,有时会氨基酸构型改变,成为D-型,失去营养价值;还有可能引起氨基酸得脱羧、脱二氧化碳、脱氨等反应而降低干重、氮及含硫量;过度得热处理有时还会生成有毒化合物。

第六章维生素

1、维生素A原:

本身不具备维生素A活性,但在体内可以转化为维生素A得物质,称为维生素A原。

2、主要维生素得分类及功能:

按照溶解性,维生素分为水溶性维生素、脂溶性维生素两大类。

水溶性维生素有维生素C、维生素B1、维生素B2、尼克酸、维生素B6、叶酸、维生素B12、泛酸、生物素等,

脂溶性维生素有维生素A、维生素D、维生素E、维生素K等。

辅酶或辅酶前体:

如烟酸,叶酸等

维生素抗氧化剂:

VE,VC

得功能遗传调节因子:

VA,VD

某些特殊功能:

VA-视觉功能、VC-血管脆性

3、简述VE得功能、稳定性、在哪些食物中存在及在功能食品中得应用。

生理功能:

抗氧化作用。

油脂中常用,保护其它易被氧化得物质,如维生素A及不饱与脂肪酸等。

提高机体免疫能力。

抗不育症。

缺乏VE,将不能生育,还会引起肌肉萎缩,肾脏损失等。

化学稳定性:

黄色油状物,维生素E对热、酸、碱、紫外光得作用均比较稳定,高温下加热不易遭到破坏。

维生素E对氧敏感,在空气中易氧化成无活性得醌类物质。

分布:

维生素E广泛地分布于动植物组织中,特别就是小麦胚油、棉籽油、花生油及大豆油中含量较多。

在功能食品中得应用:

4、食品中维生素在贮藏加工过程中得损失途径有哪些?

为尽量降低维生素得损失,可采用哪些措施?

维生素就是所有营养素中受加工与贮存条件影响最大得一类营养素,容易受光、氧、温度、pH值、射线、氧化剂、金属离子、食品添加剂、水分含量、酶等因素得影响而损失。

1、成熟度

果实在不同成熟期中抗坏血酸得含量不同,未成熟时含量较高,而一般说来蔬菜与之相反,成熟度越高,维生素含量越高,辣椒成熟就就是一例。

2、部位

植物得不同部位维生素含量不同,其中根部最少。

其次就是果实与茎,含量最高得部位就是叶,对果实而言,表皮含维生素最高,并向核心依次递减。

3、采后及贮藏过程中得影响

原料中留存得酶导致产后维生素含量得变化。

细胞受损后释放出来得酶改变维生素得化学形式与活性,进而影响其生物利用率。

正确处理方法:

采后立即冷藏,维生素氧化酶被抑制,维生素损失减少。

4、加工程度(修整与研磨)得影响:

植物组

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2