自动控制毕业论文中英文资料外文翻译文献.docx

上传人:b****1 文档编号:2045354 上传时间:2023-05-02 格式:DOCX 页数:16 大小:294.30KB
下载 相关 举报
自动控制毕业论文中英文资料外文翻译文献.docx_第1页
第1页 / 共16页
自动控制毕业论文中英文资料外文翻译文献.docx_第2页
第2页 / 共16页
自动控制毕业论文中英文资料外文翻译文献.docx_第3页
第3页 / 共16页
自动控制毕业论文中英文资料外文翻译文献.docx_第4页
第4页 / 共16页
自动控制毕业论文中英文资料外文翻译文献.docx_第5页
第5页 / 共16页
自动控制毕业论文中英文资料外文翻译文献.docx_第6页
第6页 / 共16页
自动控制毕业论文中英文资料外文翻译文献.docx_第7页
第7页 / 共16页
自动控制毕业论文中英文资料外文翻译文献.docx_第8页
第8页 / 共16页
自动控制毕业论文中英文资料外文翻译文献.docx_第9页
第9页 / 共16页
自动控制毕业论文中英文资料外文翻译文献.docx_第10页
第10页 / 共16页
自动控制毕业论文中英文资料外文翻译文献.docx_第11页
第11页 / 共16页
自动控制毕业论文中英文资料外文翻译文献.docx_第12页
第12页 / 共16页
自动控制毕业论文中英文资料外文翻译文献.docx_第13页
第13页 / 共16页
自动控制毕业论文中英文资料外文翻译文献.docx_第14页
第14页 / 共16页
自动控制毕业论文中英文资料外文翻译文献.docx_第15页
第15页 / 共16页
自动控制毕业论文中英文资料外文翻译文献.docx_第16页
第16页 / 共16页
亲,该文档总共16页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

自动控制毕业论文中英文资料外文翻译文献.docx

《自动控制毕业论文中英文资料外文翻译文献.docx》由会员分享,可在线阅读,更多相关《自动控制毕业论文中英文资料外文翻译文献.docx(16页珍藏版)》请在冰点文库上搜索。

自动控制毕业论文中英文资料外文翻译文献.docx

自动控制毕业论文中英文资料外文翻译文献

  

   

 毕业论文外文译文

 

    

 

  

学院  自动化与电气工程学院 

专 业  自动控制  

 

Component-basedSafetyComputerofRailway SignalInterlockingSystem

1Introduction

SignalInterlockingSystemis thecriticalequipmentwhichcanguarantee trafficsafetyandenhanceoperational efficiency in railwaytransportation.Foralong time,thecorecontrolcomputer adoptsin interlockingsystemis thespecialcustomizedhigh-gradesafetycomputer,forexample,theSIMIS ofSiemens,theEI32ofNipponSignal,and soon.Along withtherapid developmentofelectronictechnology,the customizedsafetycomputeris facingseverechallenges,for instance,thehighdevelopmentcosts,poorusability,weakexpansibilityand slowtechnology update.To overcometheflaws of thehigh-grade specialcustomized computer,theU.S.DepartmentofDefensehasputforwardtheconcept:

weshouldadoptcommercial standardstoreplace militarynormsandstandards for meetingconsumers’demand[1].Inthemeantime,thereareseveralexplorationsandpracticesaboutadoptingopensystemarchitectureinavionics.TheUnited Statedand Europehavedomuchresearchaboututilizingcost-effectivefault-tolerantcomputertoreplace thededicatedcomputerin aerospaceandother safety-criticalfields.In recent years,itisgraduallybecominganewtrendthat theutilizationof standardizedcomponentsinaerospace,industry,transportation and other safety-criticalfields.

2 Railways signalinterlockingsystem

2.1 Functions ofsignalinterlocking system

The basicfunctionofsignalinterlockingsystem istoprotecttrainsafetybycontrolling signalequipments,such as switchpoints, signalsand track unitsin astation, andithandles routes viaacertain interlocking regulation.

Since thebirthoftherailway transportation,signal interlockingsystemhasgone throughmanual signal,mechanical signal,relay-basedinterlocking,and themodern computer-based InterlockingSystem.

2.2Architectureofsignalinterlockingsystem

Generally, theInterlockingSystemhas ahierarchicalstructure.Accordingto the functionofequipments, thesystemcanbedividedto thefunctionofequipments; thesystemcan bedividedintothreelayersasshown in figure1.

Figure 1ArchitectureofSignalInterlockingSystem

3Component-basedsafetycomputerdesign

3.1 Designstrategy

The design conceptof component-based safetycriticalcomputerisdifferent fromthatofspecialcustomizedcomputer. Ourdesignstrategy of SICis onabaseoffault-toleranceandsystem integration. WeseparatetheSICintothree layers,thestandardizedcomponentunitlayer,safety softwarelayerandthesystemlayer.Differentsafetyfunctionsareallocatedforeachlayer, andthefinalintegrationof thethreelayersensuresthepredefinedsafety integritylevelofthewhole SIC.The threelayerscanbedescribedasfollows:

(1) Componentunitlayer includesfour independentstandardized CPUmodules.Ahardware “SAFETY AND”logic isimplementedinthisyear.

(2) Safetysoftwarelayer mainlyutilizesfail-safestrategyandfault-tolerant management.Theinterlockingsafetycomputingofthewholesystem adoptstwooutputsfromdifferentCPU, it canmostlyensure the diversityofsoftwaretohold with designerrorsofsignalversionand removehiddenrisks.

(3) Systemlayeraimstoimprovereliability,availabilityandmaintainabilitybymeansofredundancy.

3.2Design ofhardware fault-tolerantstructure

Asshowninfigure 2, theSICof fourindependentcomponentunits(C11,C12, C21,C22).Thefault-tolerantarchitectureadopts dual2vote2(2v2×2)structure,and a kindofhigh-performancestandardizedmodulehasbeenselectedascomputingunitwhichadoptsIntelXScalekernel,533MHZ.

Theoperationof SICisbasedona dual two-layerdatabuses.Thehighbus adopts thestandard Ethernetand TCP/IPcommunication protocol,andthelowbus isControllerAreaNetwork(CAN).C11、C12andC21、C22 respectively make upoftwo safetycomputingcomponentsIC1 andIC2,whichare of2v2structure.Andeach componenthasanexternal dynamiccircuitwatchdogthatis setforcomputing supervision andswitching. 

Figure 2HardwarestructureofSIC

3.3ﻩStandardizedcomponentunit

After component module is made certain,accordingto thesafety-criticalrequirementsofrailway signal interlocking system,wehavetodoa secondarydevelopmentonthemodule. Thedesignincludes powersupply, interfacesandotherembeddedcircuits.

The fault-tolerant processing,synchronized computing,andfaultdiagnosis ofSICmostly depend onthesafetysoftware.Herethesafetysoftwaredesignmethodisdifferingfromthatofthespecialcomputertoo.Fordedicated computer,thesoftwareisoftenspecially designed basedon the barehardware.As restricted bycomputingabilityandapplicationobject,a specialschedulingprogram iscommonlydesignedassafetysoftwareforthecomputer,andnota universaloperatingsystem.Thefault-tolerantprocessingand fault diagnosis ofthededicatedcomputeraretightlyhardware-coupled.However,thesafetysoftware forSICisexotericandlooselyhardware-coupled,and itisbased onastandardLinuxOS.

Thesafetysoftwareisvitalelement ofsecondarydevelopment.Itincludes LinuxOSadjustment,fail-safeprocess,fault-tolerancemanagement,andsafetyinterlocking logic.Thehierarchy relationsbetweenthem areshownin Figure4.

Figure4 Safety softwarehierarchyofSIC

3.4Fault-tolerantmodelandsafetycomputation

3.4.1Fault-tolerantmodel

The Fault-tolerantcomputationofSICisofamultilevel model:

SIC=F1002D(F2002(Sc11,Sc12),F2002(Sc21,Sc22))

Firstly,basiccomputingunit Ci1adoptsonealgorithmtocompletethe SCi1, andCi2finishestheSCi2viaadifferentalgorithm,secondly2out of2 (2oo2)safetycomputingcomponent of SIC executes2oo2calculationandgetsFSICifromthecalculation resultsofSCi1SCi2,andthirdly, accordingthestates ofwatchdog andswitchunit block,the resultofSIC isgottenviaa 1 outof2withdiagnostics(1oo2D) calculation,whichisbasedon FSIC1andFSIC2.

The flowofcalculationsisasfollows:

(1)Sci1=Fci1(Dnet1,Dnet2,Ddi,Dfss)

(2) Sci2=Fci2 (Dnet1,Dnet2,Ddi,Dfss)

(3) FSICi=F2oo2 (Sci1, Sci2),(i=1,2)

(4) SIC_OutPut=F1oo2D (FSIC1, FSIC2)

3.4.2Safety computation

Asinterlockingsystemconsistsofafixedsetoftask,the computationalmodelofSICistask-based.Ingeneral,applications mayconformtoatime-triggered,event-triggeredormixedcomputationalmodel.Herethetime-triggeredmodeisselected,tasks are executedcyclically.Theconsistency of computingstatesbetweenthetwounitsisthefoundationofSICforensuringsafetyand credibility.AsSICworksunder aloosely coupledmode,itisdifferentfromthatofdedicatedhardware-coupled computer.Soaspecializedsynchronizationalgorithmisnecessary forSIC.

SICcanbeconsideredasa multiprocessordistributedsystem, andits computationalmodelisessentially based ondatacomparingviahighbus communication.First, ananalytical approach isusedtoconfirmtheworst-caseresponse timeofeachtask.Toguaranteethe deadline oftasks that communicateacrossthenetwork,theaccesstime and delay of communication mediumissetto a fixed possiblevalue.Moreover,the computationalmodelmustmeetstherealtimerequirementsofrailwayinterlockingsystem,within thesystemcomputingcycle,weset manycheckpoints Pi(i=1,2,...n),which aresmallenough forsynchronization,andcomputationresult votingisexecutedat eachpoint.Thesafety computationflowofSICisshowninFigure 5.

Figure5 SafetycomputationalmodelofSIC

4.Hardware safetyintegritylevelevaluation

4.1 SafetyIntegrity

Asan authoritativeinternationalstandardforsafety-relatedsystem,IEC61508presentsa definition ofsafetyintegrity:

probabilityofasafety-relatedsystemsatisfactorily performingtherequiredsafetyfunctionsunder allthestatedconditionswithin astated periodoftime.In IEC61508,therearefourlevels ofsafety integrity are prescribe,SIL1~SIL4.TheSIL1is thelowest, and SIL4highest.

AccordingtoIEC 61508,the SIC belongsto safety-relatedsystemsinhighdemandorcontinuousmodeof operation.TheSILofSICcanbeevaluatedviatheprobabilityofdangerousperhour.Theprovision ofSILabout suchsysteminIEC 61508, seetable1.

Table 1-SafetyIntegritylevels:

target failuremeasures forasafetyfunctionoperatinginhighdemand orcontinuous modeof operation

Safety Integritylevel

Highdemand or continuousmodeofOperation

(Probability ofadangerous Failureperhour)

4              ≥10-9to<10-8

3       ≥10-8to<10-7

2        ≥10-7to<10-6

1         ≥10-6 to<10-5

4.2Reliability blockdiagramof SIC

 Afteranalyzing thestructureandworking principleoftheSIC,wegetthebockdiagramof reliability, asfigure6.

Figure6Blockdiagramof SICreliability

5.Conclusions

In thispaper,weproposedanavailablestandardized component-basedcomputerSIC.Railwaysignalinterlockingisafail-safesystemwitha required probabilityofless than10-9safetycriticalfailures perhour.Inorder tomeetthecriticalconstraints,fault-tolerantarchitecture andsafetytactics areusedinSIC.Althoughthecomputationalmodelandimplementationtechniques arerathercomplex,the philosophy ofSICprovidesacheerfulprospecttosafetycriticalapplications, it rendersinasimpler styleofhardware,furthermore,itcanshortendevelopmentcycle and reduce cost. SIC hasbeen putinto practical application, andhighperformance ofreliabilityandsafetyhasbeen proven.

………………………………………………………………………………………………………

                From:

 

模块化安全铁路信号计算机联锁系统

1概述

信号联锁系统是保证交通安全、提高铁路运输效率的关键设备。

长期以

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2