带电粒子在有界磁场中运动及复合场运动题型及解题技巧.docx

上传人:b****2 文档编号:2207122 上传时间:2023-05-02 格式:DOCX 页数:12 大小:125.32KB
下载 相关 举报
带电粒子在有界磁场中运动及复合场运动题型及解题技巧.docx_第1页
第1页 / 共12页
带电粒子在有界磁场中运动及复合场运动题型及解题技巧.docx_第2页
第2页 / 共12页
带电粒子在有界磁场中运动及复合场运动题型及解题技巧.docx_第3页
第3页 / 共12页
带电粒子在有界磁场中运动及复合场运动题型及解题技巧.docx_第4页
第4页 / 共12页
带电粒子在有界磁场中运动及复合场运动题型及解题技巧.docx_第5页
第5页 / 共12页
带电粒子在有界磁场中运动及复合场运动题型及解题技巧.docx_第6页
第6页 / 共12页
带电粒子在有界磁场中运动及复合场运动题型及解题技巧.docx_第7页
第7页 / 共12页
带电粒子在有界磁场中运动及复合场运动题型及解题技巧.docx_第8页
第8页 / 共12页
带电粒子在有界磁场中运动及复合场运动题型及解题技巧.docx_第9页
第9页 / 共12页
带电粒子在有界磁场中运动及复合场运动题型及解题技巧.docx_第10页
第10页 / 共12页
带电粒子在有界磁场中运动及复合场运动题型及解题技巧.docx_第11页
第11页 / 共12页
带电粒子在有界磁场中运动及复合场运动题型及解题技巧.docx_第12页
第12页 / 共12页
亲,该文档总共12页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

带电粒子在有界磁场中运动及复合场运动题型及解题技巧.docx

《带电粒子在有界磁场中运动及复合场运动题型及解题技巧.docx》由会员分享,可在线阅读,更多相关《带电粒子在有界磁场中运动及复合场运动题型及解题技巧.docx(12页珍藏版)》请在冰点文库上搜索。

带电粒子在有界磁场中运动及复合场运动题型及解题技巧.docx

带电粒子在有界磁场中运动及复合场运动题型及解题技巧

带电粒子在有界磁场中运动及复合场运动题型及解题技巧

相距多远?

射出的时间差是多少?

  解析:

正、负电子的半径和周期是相同的。

只是偏转方向相反。

先确定圆心,画出半径和轨迹(如图4),由对称性知:

射入、射出点和圆心恰好组成正三角形。

所以两个射出点相距s=2r=

,由图还看出经历时间相差

,所以解此题的关键是找圆心、找半径和用对称。

 

  例2.如图5所示,在半径为r的圆形区域内,有一个匀强磁场。

一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。

当∠MON=120°时,求:

带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。

  解析:

分别过M、N点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。

  由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O'的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30°=

  又带电粒子的轨道半径可表示为:

    故带电粒子运动周期:

  带电粒子在磁场区域中运动的时间

  二、旋转圆法

  在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。

  例3.如图8所示,S为电子源,它在纸面360°度范围内发射速度大小为v0,质量为m,电量为q的电子(q<0),MN是一块足够大的竖直挡板,与S的水平距离为L,挡板左侧充满垂直纸面向外的匀强磁场,磁感应强度大小为mv0/qL,求挡板被电子击中的范围为多大?

  解析:

由于粒子从同一点向各个方向发射,粒子的轨迹为绕S点旋转的动态圆,且动态圆的每一个圆都是逆时针旋转,这样可以作出打到最高点与最低点的轨迹,如图9所示,最高点为动态圆与MN的相切时的交点P,最低点为动态圆与MN相割,且SQ为直径时Q为最低点,带电粒子在磁场中作圆周运动,由洛仑兹力提供向心力,由

    得:

 

  SQ为直径,则:

SQ=2L,SO=L,由几何关系得:

  P为切点,所以OP=L,所以粒子能击中的范围为

  例4.(2010全国新课程卷)如图10所示,在0≤x≤A.0≤y≤

范围内有垂直于xy平面向外的匀强磁场,磁感应强度大小为B。

坐标原点O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xy平面内,与y轴正方向的夹角分布在0~90°范围内。

己知粒子在磁场中做圆周运动的半径介于

到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一。

求最后离开磁场的粒子从粒子源射出时的:

  

(1)速度大小;

(2)速度方向与y轴正方向夹角正弦。

  解析:

设粒子的发射速度为v,粒子做圆周运动的半径为R,由牛顿第二定律和洛仑兹力公式得:

,解得:

从O点以半径R(

<R<a)作“动态圆”,如图11所示,由图不难看出,在磁场中运动时间最长的粒子,其轨迹是圆心为C的圆弧,圆弧与磁场的边界相切。

设该粒子在磁场中的运动时间为t,依题意

,所以∠OCA=

 

  设最后离开磁场的粒子的发射方向与y轴正方向的夹角为α,由几何关系得:

 

  

,再加上

 

  解得:

  三、缩放圆法

  带电粒子以大小不同,方向相同的速度垂直射入匀强磁场中,作圆周运动的半径随着速度的变化而变化,因此其轨迹为半径缩放的动态圆(如图12),利用缩放的动态圆,可以探索出临界点的轨迹,使问题得到解决。

  例5.如图13所示,匀强磁场中磁感应强度为B,宽度为d,一电子从左边界垂直匀强磁场射入,入射方向与边界的夹角为θ,已知电子的质量为m,电量为e,要使电子能从轨道的另一侧射出,求电子速度大小的范围。

  解析:

如图14所示,当入射速度很小时电子会在磁场中转动一段圆弧后又从同一侧射出,速率越大,轨道半径越大,当轨道与边界相切时,电子恰好不能从另一侧射出,当速率大于这个临界值时便从右边界射出,设此时的速率为v0,带电粒子在磁场中作圆周运动,由几何关系得:

r+rcosθ=d       ①

  电子在磁场中运动时洛伦兹力提供向心力:

,所以:

     

  联立①②解得:

,所以电子从另一侧射出的条件是速度大于

  例6.(2010全国II卷)如图15所示,左边有一对平行金属板,两板的距离为d,电压为U,两板间有匀强磁场,磁感应强度为B0,方面平行于板面并垂直纸面朝里。

图中右边有一边长为a的正三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直纸面向里。

假设一系列电荷量为q的正离子沿平行于金属板面、垂直于磁场的方向射入金属板之间,沿同一方向射出金属板间的区域,并经EF边中点H射入磁场区域。

不计重力。

  

(1)已知这些离子中的离子甲到达边界EG后,从边界EF穿出磁场,求离子甲的质量;

  

(2)已知这些离子中的离子乙从EG边上的I点(图中未画出)穿出磁场,且GI长为3a/4,求离子乙的质量;

  (3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达?

  解析:

由题意知,所有离子在平行金属板之间做匀速直线运动,则有:

qvB0=qU/d,解得离子的速度为:

v=U/B0d(为一定数值)。

  虽然离子速度大小不变,但质量m改变,结合带电离子在磁场中做匀速圆周运动的半径公式R=mv/qB分析,可画出不同质量的带电离子在磁场中的运动轨迹,如图16中的动态圆。

  

(1)由题意知,离子甲的运动轨迹是图17中的半圆,半圆与EG边相切于A点,与EF边垂直相交于B点,由几何关系可得半径:

R甲=acos30°tan15°=(

)a,

  从而求得离子甲的质量m甲=

  

(2)离子乙的运动轨迹如图18所示,在ΔEIO2中,由余弦定理得:

  

,解得R乙=a/4,

  从而求得乙离子的质量m乙=

关于带电粒子在电场的运动问题,高考题中经常出现,下面我们先看一个例题:

  例:

如图所示,质量为m电荷量为q的带电粒子以平行于极板的初速度v0射入长L板间距离为d的平行板电容器间,两板间电压为U,求射出时的侧移、偏转角和动能增量.

  解:

分解为两个独立的分运动:

平行极板的匀速运动(运动时间由此分运动决定)

,垂直极板的匀加速直线运动,

.偏角:

,得:

.穿越电场过程的动能增量是:

ΔEK=qEy(注意,一般来说不等于qU),从例题可以得出结论有三:

  结论一、不同带电粒子从静止进入同一电场加速后再垂直进入同一偏转电场,射出时的偏转角度总和位移偏转量y是相同的,与粒子的q、m无关。

  例1.如图所示,电子在电势差为U1的加速电场中由静止开始运动,然后射入电势差为U2的两块平行极板间的电场中,射入方向跟极板平行,整个装置处在真空中,重力可忽略,在满足电子能射出平行板区的条件下,下述四种情况中,一定能使电子的偏转角θ变大的是(   )

  A.U1变大、U2变大B.U1变小、U2变大

  C.U1变大、U2变小D.U1变小、U2变小

  解析:

电子在加速电场中由动能定理得

电子在偏转电场中有:

.由以上各式得:

,可知要使θ增大必然U2变大,U1变小,故选B.答案:

B

  结论二、粒子垂直进入电场偏转射出后,速度的反向延长线与初速度延长线的交点为粒子水平位移中点。

(粒子好像是从中点直线射出!

  例2.证明:

在带电的平行金属板电容器中,只要带电粒子垂直电场方向射入(不一定在正中间),且能从电场中射出如图所示,则粒子射入速度v0的方向与射出速度vt的方向的交点O必定在板长L的中点.

  证明:

粒子从偏转电场中射出时偏距

,粒子从偏转电场中射出时的偏向角

,作粒子速度的反向延长线,设交于O点,O点与电场边缘的距离为x,则

可知,粒子从偏转电场中射出时,就好像是从极板间的

处沿直线射出似的,即证。

  结论三、粒子垂直飞入电场偏转射出时,速度偏转角正切值(

)等于位移偏转角正切值(

)的两倍(

)。

  例3.(2009山东)如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里。

位于极板左侧的粒子源沿x轴间右连接发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响)。

已知t=0时刻进入两板间的带电粒子恰好在t0时,刻经极板边缘射入磁场。

上述m、q、l、l0、B为已知量。

(不考虑粒子间相互影响及返回板间的情况)

(1)求电压U的大小。

(2)求

时进入两板间的带电粒子在磁场中做圆周运动的半径。

  解析:

(1)

时刻进入两极板的带电粒子在电场中做匀变速曲线运动,

时刻刚好从极板边缘射出,在y轴负方向偏移的距离为

,则有

联立以上三式,解得两极板间偏转电压为

  

(2)

时刻进入两极板的带电粒子,前

时间在电场中偏转,后

时间两极板没有电场,带电粒子做匀速直线运动。

带电粒子沿x轴方向的分速度大小为

带电粒子离开电场时沿y轴负方向的分速度大小为

带电粒子离开电场时的速度大小为

设带电粒子离开电场进入磁场做匀速圆周运动的半径为R,则有

联立上式解得

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 动物植物

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2