OPA320.docx

上传人:b****1 文档编号:2462131 上传时间:2023-05-03 格式:DOCX 页数:32 大小:1.58MB
下载 相关 举报
OPA320.docx_第1页
第1页 / 共32页
OPA320.docx_第2页
第2页 / 共32页
OPA320.docx_第3页
第3页 / 共32页
OPA320.docx_第4页
第4页 / 共32页
OPA320.docx_第5页
第5页 / 共32页
OPA320.docx_第6页
第6页 / 共32页
OPA320.docx_第7页
第7页 / 共32页
OPA320.docx_第8页
第8页 / 共32页
OPA320.docx_第9页
第9页 / 共32页
OPA320.docx_第10页
第10页 / 共32页
OPA320.docx_第11页
第11页 / 共32页
OPA320.docx_第12页
第12页 / 共32页
OPA320.docx_第13页
第13页 / 共32页
OPA320.docx_第14页
第14页 / 共32页
OPA320.docx_第15页
第15页 / 共32页
OPA320.docx_第16页
第16页 / 共32页
OPA320.docx_第17页
第17页 / 共32页
OPA320.docx_第18页
第18页 / 共32页
OPA320.docx_第19页
第19页 / 共32页
OPA320.docx_第20页
第20页 / 共32页
亲,该文档总共32页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

OPA320.docx

《OPA320.docx》由会员分享,可在线阅读,更多相关《OPA320.docx(32页珍藏版)》请在冰点文库上搜索。

OPA320.docx

OPA320

20MHZ,0.9pA,低噪声精密CMOS运算放大器

OPA320

特性

·精密零交越失真:

--低失调电压:

150μV(max)

--高共模抑制比:

114dB

--轨到轨输入/输出

·低输入失调电流:

0.9pA(max)

·低噪声:

7nV/√Hzat10kHz

·带宽:

20MHz

·压摆率:

10V/μs

·静态电流:

1.45mA/ch

·单电源供电范围:

1.8V到5.5V

·OPA320S,OPA2320S:

--IQ关机模式电流:

0.1μA

·单位增益稳定(跟随器)

·小型封装

--SOT23,MSOP,DFN

应用

·高阻抗传感器信号调节

·互阻抗放大器

·测试测量装置

·可编程逻辑控制器(PLCs)

·电机控制环路

·通信设备

·输入/输出数模转换/模数转换缓冲器

·有源滤波器

 

 

描述

OPA320(单)与OPA2320(双)新一代低噪声精密低功耗CMOS运算放大器,对低噪声和带宽进行了优化,而静态电流只有1.45mA。

OPA320系列是低功耗、单电源应用的理想选择。

(7nV/√Hz)的低噪声和高速,也使他们非常适合模数转换器(ADC)。

其他应用包括信号调理和传感器放大。

OPA320具有零交越失真,可提供高的共模抑制比(CMRR),通常在整个输入范围内114dB线性输入阶段。

超出正负电源100mV的输入共模范围。

通常输出电压波动范围内的轨为10mV。

此外,OPAx320宽电源电压范围从1.8V到5.5V,在整个电源电压范围内具有优良的PSRR(106dB),使它们适合用于精密,低功耗的应用。

OPA320(单运放)提供SOT23-5封装; OPA320S(单运放和带关机模式)提供SOT23-6封装。

双OPA2320提供SO-8,MSOP-8,和DFN-8封装,和MSOP-10封装OPA2320S(双运放和带关机模式)。

 

封装/订购信息

产品

封装

封装指示

封装标识数量

OPA320

SOT23-5

DBV

RAC

OPA320S

SOT23-6

DBV

RAE

OPA2320

MSOP-8

DGK

OCLQ

DFN-8

DRG

OCMQ

OPA2320

SO-8

D

O2320A

OPA2320S

MSOP-10

DGS

TBD

极限值

(1)

在常温常压范围内,除非有特殊说明

OPA320,OPA320S,OPA2320,OPA2320S

单位

供电电压,VS=(V+)–(V–)

6

V

信号输入引脚

电压

(2)

(V–)–0.5to(V+)+0.5

V

电流

(2)

±10

mA

输出短路电流(3)

连续

mA

工作温度,TA

–40to+150

°C

存储温度,TSTG

–65to+150

°C

临界温度,TJ

+150

°C

ESD(静电释放)额定值

人体模型(HBM)

4000

V

充电装置模型(CDM)

1000

V

机械模型(MM)

200

V

(1)以上这些评级的压力,可能会造成永久性损坏。

长时间暴露在绝对最大条件下可能会降低器件的可靠性。

这些仅仅是极限参数,并在这些或超出指定的任何其他条件,并不意味着设备的功能操作。

(2)输入端子二极管钳位电压,应限制为10mA或更小的电流输入信号,可以摆动超过0.5V电压。

(3)短路接地,每个封装一个放大器。

 

电气特性:

VS=+1.8Vto+5.5Vor±0.9Vto±2.75V

限制适用于在指定的温度范围TA=–40°Cto+125°C.

AtTA=+25°C,RL=10kΩconnectedtoVS/2,VCM=VS/2,VOUT=VS/2,andSHDNx=VS+,,除非额外说明

参数

测试条件

OPA320,OPA320S,OPA2320,OPA2320S

单位

 

 

MIN

TYP

MAX

失调电压

 

 

 

 

 

输入失调电压VOS

 

40

150

μV 

与温度关系dVOS/dT

 VS=+5.5V

 

1.5

5

 μV/°C

与供电电压关系PSR

VS=+1.8Vto+5.5V 

 

5

20

μV/V 

过温

 VS=+1.8Vto+5.5V

 

15

μV/V 

频道分离

 At1kHz

 

130

dB 

输入电压

 

 

 

 

 

共模电压范围VCM

(V–)–0.1

(V+)+0.1

V

共模抑制比CMRR

VS=5.5V,(V–)–0.1V

100

114

dB

过温

96

dB

输入偏置电流

 

 

 

 

 

输入偏置电流IB

±0.2

±0.9

pA

过温

TA=–40°Cto+85°C

±50

pA

OPA2320,OPA2320S,TA=–40°Cto+125°C

±400

pA

OPA320,OPA320S,TA=–40°Cto+125°C

±600

pA

输入失调电流IOS

±0.2

±0.9

pA

过温

TA=–40°Cto+85°C

±50

pA

TA=–40°Cto+125°C

±400

pA

噪声

 

 

 

 

 

输入电压噪声

f=0.1Hzto10Hz

2.8

μVPP

输入电压噪声密度en

f=1kHz

8.5

nV/√Hz

f=10kHz

7

nV/√Hz

输入电流噪声密度in

f=1kHz

0.6

fA/√Hz

输入电容

 

 

 

 

 

差分

5

pF

共模

4

pF

开环增益

 

 

 

 

 

开环电压增益AOL

0.1V

114

132

dB

0.1V

100

130

dB

0.2V

108

123

dB

0.2V

96

130

dB

相位幅度PM

VS=5V,CL=50pF

47

Degrees

频率响应

 

 

 

 

 

带宽增益积GBP

Unitygain

20

MHz

压摆率SR

G=+1

10

V/μs

稳定时间tS

To0.1%,2Vstep,G=+1

0.25

μs

To0.01%,2Vstep,G=+1

0.32

μs

To0.0015%,2Vstep,G=+1(

0.5

μs

过载恢复时间

VIN×G>VS

100

μs

总谐波失真+噪声THD+N

VO=4VPP,G=+1,f=10kHz,RL=10kΩ

0.0005

%

VO=2VPP,G=+1,f=10kHz,RL=600Ω

0.0011

%

电气特性:

VS=+1.8Vto+5.5Vor±0.9Vto±2.75V

限制适用于在指定的温度范围TA=–40°Cto+125°C.

AtTA=+25°C,RL=10kΩconnectedtoVS/2,VCM=VS/2,VOUT=VS/2,andSHDNx=VS+,除非额外说明

参数

测试条件

OPA320,OPA320S,OPA2320,OPA2320S

单位

 

 

MIN

TYP

MAX

输出

两轨输出电压摆幅VO

RL=10kΩ

10

20

mV

RL=2kΩ

25

35

mV

过温

RL=10kΩ

30

mV

RL=2kΩ

45

mV

短路电流ISC

VS=5.5V

±65

mA

容性负载驱动CL

开环输出电阻RO

IO=0mA,f=1MHz

90

Ω

关机模式

 

每个放大器静态电流IQSD

所有放大器关闭,SHDN=V–

0.1

0.5

μA

OPA2320Sonly,SHDNA=VS–,SHDNB=VS+

1.6

mA

OPA2320Sonly,SHDNA=VS+,SHDNB=VS–

1.6

mA

高电平输入电压VIH

放大器启用

0.7×VS+

5.5

V

低电平输入电压VIL

放大器禁用

0.3×VS+

V

放大器启用时间tON

G=1,VOUT=0.1×VS/2,全关闭

20

μs

OPA2320Sonly,部分关闭

6

放大器禁用时间tOFF

G=1,VOUT=0.1×VS/2

3

μs

SHDN引脚输入偏置电流

VIH=5V

0.13

μA

VIL=0V

0.14

μA

电源供电

额定电压范围VS

1.8

5.5

V

每个放大器静态电流IQ

OPA320,OPA320S

IO=0mA,VS=+5.5V

1.5

1.75

mA

过温

IO=0mA,VS=+5.5V

1.85

mA

OPA2320,OPA2320S

IO=0mA,VS=+5.5V

1.45

1.6

mA

过温

IO=0mA,VS=+5.5V

1.7

mA

开机时间

V+=0Vto5V,to90%IQlevel

28

μs

温度

额定范围

–40

+125

°C

操作范围

–40

+125

°C

 

热信息:

OPA320,OPA320S

热公制

OPA320

OPA320S

单位

DBV(SOT23)

DBV(SOT23)

5PINS

6PINS

θJA结点环境阻抗

219.3

177.5

°C/W

θJC(top)连接到顶外壳的热阻

107.5

108.9

θJB结点到板的热阻

57.5

27.4

ψJT结点到顶部特性参数

7.4

13.3

ψJB结点到板的特性参数

56.9

26.9

θJC(bottom)连接到底外壳的热阻

N/A

N/A

欲了解更多有关传统和新的热指标的信息,请查看IC封装的热计量的申请报告,SPRA953。

热信息:

OPA2320,OPA2320S

热公制

OPA2320

OPA2320S

单位

D(SO)

DGK(MSOP)

DRG(DFN)

DGS(MSOP)

8PINS

8PINS

8PINS

10PINS

θJA结点环境阻抗

122.6

174.8

50.6

171.5

°C/W

θJC(top)连接到顶外壳的热阻

67.1

43.9

54.9

43.0

θJB结点到板的热阻

64.0

95.0

25.2

91.4

ψJT结点到顶部特性参数

13.2

2.0

0.6

1.9

ψJB结点到板的特性参数

63.4

93.5

25.3

89.9

θJC(bottom)连接到底外壳的热阻

N/A

N/A

5.7

N/A

欲了解更多有关传统和新的热指标的信息,请查看IC封装的热计量的申请报告,SPRA953。

 

引脚配置

 

典型特性

AtTA=+25°C,VCM=VOUT=mid-supply,andRL=10kΩ,unlessotherwisenoted

失调电压的生产布局失调电压漂移分布

偏移电压VS共模电压开环增益/相位随频率的变化

开环增益与温度的关系静态电流与电源电压

 

输入偏置电流与电源电压输入偏置电流和共模电压

输入偏置电流分布输入偏置电流与温度的关系

CMRR和PSRR与频率的关系CMRR和PSRR与温度的关系

 

输入电压噪声谱密度与频率的关系0.1Hz至10Hz输入电压噪声

闭环增益与频率的关系闭环增益与频率的关系

最大输出电压与频率的关系输出电压摆幅与输出电流关系

 

开环输出阻抗随频率的变化小信号的过冲与负载电容关系

THD+N与振幅的关系THD+N与频率的关系

THD+N与振幅的关系声道分离与频率关系(双运放)

 

压摆率与电源电压的关系小信号阶跃响应

小信号阶跃响应大信号阶跃响应与时间的关系

 

应用信息

工作电压

OPA320系列运算放大器是单位增益稳定,可以操作的单电源电压(1.8V至5.5V),或分裂的电源电压(±0.9V至±2.75V),使他们非常灵活,易于使用。

电源引脚应该有本地旁路陶瓷电容(通常0.001μF至0.1μF)。

OPA320放大器完全指定+1.8V至+5.5V和在扩展级温度范围为-40°C至+125°C工作电压或温度的变化的参数,可查看典型特征。

输入和静电保护

OPA320采用内部静电放电(ESD)保护

电路上的所有引脚。

在输入和输出引脚的情况下,这种保护主要包括电流控制输入和电源引脚之间连接的二极管。

还提供了在电路的输入过载的保护,至10mA电流限制在绝对最大额定值表示,这些ESD保护二极管。

许多输入信号本质上是有限电流小于10mA,因此,限流电阻是不是必需的。

图29显示了如何输入端串联电阻(RS)可能被添加到驱动输入限制输入电流。

新增加的电阻有助于热噪声放大器的输入,并应保持在噪声敏感应用中的最低值。

 

轨到轨输入

OPA320的产品系列具有真正的轨至轨输入操作,“0.9V(1.8V)低的电源电压。

OPA320放大器的设计包括一个内部电荷泵的电源与一个以上的外部电源(VS+)在约1.6V的内部电源轨放大器输入级。

这种内部的电源轨,允许单差分输入对操作和在很宽的输入共模范围内保持线性。

一个独特的零交叉输入拓扑,无需输入偏移转换许多轨至轨的典型地区,互补输入级运算放大器。

这种拓扑结构允许的OPA320提供了优越的共同模式,在整个共模输入范围,延伸超出两个电源轨100mV的性能(CMRR!

110dB,典型值)。

当用于模数转换器(ADC),OPA320的高线性度VCM范围,保证最高的线性度和最低的失真。

相位反转

OPA320运算放大器具有防止相位反转的设计,当输入引脚电压超过电源电压,提供进一步的系统稳定性和可预见性。

图30表明了当输入电压超过电源电压,没有出现任何相位反转。

 

反馈电容改善响应

为了达到最佳的稳定时间和高阻抗反馈网络的稳定性,它可能需要在反馈电阻RF,如图31所示,添加一个反馈电容。

该电容补偿由反馈网络的阻抗和OPA320输入电容(和任何寄生电容)配合,效果更为显著,具有较高的阻抗网络。

这是一个可变反馈电容,运算放大器和寄生分布电容是难以确定的,因为输入电容之间可能会有所不同。

在图31所示的电路,变量反馈电容值的选择应使输入电阻OPA320(通常9pF),再加上估计的寄生分布电容输入电容等于反馈电容乘以反馈电阻:

CIN等于OPA320的输入电容(差分和共模的总和),再加上寄生分布电容。

电容值可以调整,直到获得最佳的性能。

EMI的易感性和输入过滤

运算放大器对电磁干扰(EMI)不同的易感性不同。

如果传导EMI进入运算放大器,在放大器的输出观察直流偏置与标称值会有偏差。

这种转变是一个信号与内部的半导体结相关整改结果。

虽然所有运算放大器的所有引脚都可能收到电磁干扰的影响,输入引脚可能是最容易收到干扰的。

OPA320运算放大器系列集成了一个内部输入低通滤波器,降低了放大器的EMI。

共模和差模滤波提供由输入滤波器。

该滤波器是专为约580MHz的截止频率(±3dB)设计的,每十倍频为20dB的下降。

输出阻抗

OPA320共源输出级的开环输出阻抗约为90Ω。

当运算放大器的反馈连接,这个值是显著降低环路增益。

例如,130dB开环增益(典型值),输出阻抗降低单位增益小于0.03Ω。

对于每一个十倍频中的闭环增益上升,环路增益降低同样的数量,从而在一个有效的输出阻抗增加十倍。

虽然OPA320输出阻抗仍然非常平坦,在很宽的频率范围,在更高的频率的输出阻抗上升使运算放大器的开环增益下降。

然而,在这些频率下的输出也成为寄生的电容。

这反过来又可防止输出阻抗过高,这可能会导致驱动大容性负载时的稳定性问题。

如前所述,OPA320宽带运算放大器具有优异的容性负载驱动能力。

容性负载与稳定

OPA320是设计用于驱动容性负载的需要的应用。

与所有运算放大器一样,也有可能是特定的情况下,OPA320可能会不稳定。

特定的运算放大器电路的配置,布局,增益和输出负载的一些因素要考虑建立一个放大器是否运行稳定。

在单位增益(+1V/V)的运算放大器缓冲配置和驱动容性负载的展品更容易变得不稳定,而不是在一个更高的噪声增益放大器经营。

容性负载,在与运算放大器的输出电阻一起,降低相位裕度的反馈环路内创建一个极点。

相位裕度退化增加容性负载增大。

在单位增益配置操作时,OPA320保持稳定,纯容性负载约1NF。

一些非常大的电容器的等效串联电阻(ESR)(CL>1μF),是足以改变反馈回路中的放大器保持稳定的阶段特征。

增加放大器的闭环增益允许放大器来驱动越来越大的电容。

观测在更高的电压增益放大器的过冲响应,如图33所示,这种增加的功能是显而易见的。

增加在单位增益放大器的电容负载驱动能力的技术之一是插入一个小电阻(RS),通常为10Ω至20Ω,输出串联,如图32所示。

这个电阻显著降低大容性负载的过冲和振铃。

使用这种技术的一个可能出现的问题是,添加的串联电阻和容性负载并联的任何电阻分压器。

分压器引入,降低了输出摆幅输出的增益误差。

分压器贡献的误差可能是微不足道的。

举例来说,一个负载电阻,RL=10KΩ和RS=20Ω,增益误差只有约0.2%。

然而,当RL是下降到600Ω,OPA320是能够驱动的,误差增加至7.5%。

过载恢复时间

过载恢复时间是放大器的输出饱和后,并恢复到线性区域所花费的时间。

过载恢复就显得尤为重要,必须在存在大的瞬态放大小信号的应用功能。

图34和图35显示了OPA320的正面和负面的过载恢复时间。

在这两种情况下,饱和的OPA320前经过的时间小于100ns。

此外,无失真的输出信号之间的正面和负面的恢复时间的对称性允许出色的信号整改

 

通用布局指南

OPA320是一个宽带放大器。

为了实现设备的完整性能,良好的高频印刷电路板(PCB)的布局做法。

每个电源引脚和接地之间必须连接旁路电容尽可能靠近设备。

减小寄生电感,旁路电容应设计的走线。

无引线DFN封装

OPA320系列采用DFN型封装(又称作为SON),这是一个只有两个包底部两侧接触的QFN。

这种无铅封装最大程度节省PCB空间,并通过裸露焊盘提供了增强的热性能和电气特性。

DFN封装的主要优势之一是其低高度(0.8毫米)。

DFN封装,体积小,更小的路由区,改善热性能,减少电气寄生效应,以及引出线计划,与其他常用的封装(如SO和MSOP)是一致的。

此外,外部引线的情况下消除了弯曲导致的问题。

DFN封装可以很容易地安装使用标准的印刷电路板组装技术。

应用报告,QFN/SON PCB附件(SLUA271)应用报告,四方扁平无引线逻辑封装(SCBA017),都在下载。

外露的引线框架模具

DFN封装的底部垫应连接到最负电位(V±)。

 

应用实例

互阻放大器

宽增益带宽,低输入偏置电流,低输入电压,电流噪声使一个理想的宽带光电二极管放大器OPA320。

因为光电二极管电容会导致电路的有效噪声增益,以提高频率,低电压噪声是很重要的。

一个互阻设计的关键要素,如图36所示,是预期的二极管电容(CD),其中应包括寄生的输入共模和差模输入电容(4pF+5pF对于OPA320的)所需的互阻增益(RF)和增益带宽(GBW)OPA320(20MHz)。

有了这三个变量设置,反馈电容值(CF)可以设置控制的频率响应。

CF包括射频杂散电容,这是一个典型的表面贴装电阻0.2pF。

为了达到一个最大平坦,第二阶巴特沃斯频率响应,反馈极点应设置为:

更高的互阻带宽,高速CMOS还有(90MHz GBW)OPA380,OPA354(100MHzGBW),OPA300(180MHzGBW),OPA355(200MHzGBW),或OPA656/57(400MHzGBW)。

对于单电源应用,可偏置输入+,使正极的直流电压输出允许达到真正的零,此时光电二极管是不会受到任何光线,并没有增加的延迟响应,;此配置如图37所示。

这个偏置电压也出现在整个光电二极管,提供更快的操作一个反向偏置。

互阻电路优化

为了达到最佳性能,组件应根据下列准则:

1:

最低的噪声,选择射频创建所需的总增益。

RF一般使用较低的值和加入后的互阻放大器增益产生的噪声性能较差。

 RF射频平方根增加所造成的噪音,而信号的线性增加。

因此,信号的信噪比提高时所需的所有的增益是放置在跨阶段。

2:

在求和点的光电二极管电容和杂散电容(反相输入端)最小化。

该电容因素被放大(增加放大在高频率)的运算放大器的电压噪声。

使用一个低噪声电压源,一个光电二极管反向偏置可以显著降低其电容。

较小的光电二极管具有更低的电容。

使用光学集中在一个小的光电二极管的光。

3:

噪声增大,增加带宽。

限制到只有电路带宽的要求。

整个射频使用一个电容来限制带宽,即使不为稳定的需要。

4:

电路板渗漏可以降低一个精心设计的放大器的性能。

仔细清洁电路板。

围绕整体的连接点,并在相同的电压驱动电路板上的守护跟踪可以帮助控制泄漏。

如需详细资讯,请参阅应用程序公告的场效应管的跨导放大器(SBOA060)和噪声高速运算放大器(SBOA066),可用于在TI网站下载分析的噪声分析。

 

高阻抗传感器接口

许多传感器具有高源阻抗范围可能高达10MΩ,甚至更高。

传感器的输出信号通常必须被放大或以其他方式制约的放大器。

这个放大器的输入偏置电流可以装载传感器的输出,并导致跨源电阻的压降,如图38所示,其中(VIN+=VS–

IBIAS×RS)。

最后一项,IBIAS×RS,显示的电压降在Rs上.为了防止这样​​一个结果,这个电压与极低的输入偏置电流的运算放大器必须使用

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2