弯管方腔圆柱绕流报告.docx

上传人:b****2 文档编号:3489736 上传时间:2023-05-05 格式:DOCX 页数:25 大小:1.05MB
下载 相关 举报
弯管方腔圆柱绕流报告.docx_第1页
第1页 / 共25页
弯管方腔圆柱绕流报告.docx_第2页
第2页 / 共25页
弯管方腔圆柱绕流报告.docx_第3页
第3页 / 共25页
弯管方腔圆柱绕流报告.docx_第4页
第4页 / 共25页
弯管方腔圆柱绕流报告.docx_第5页
第5页 / 共25页
弯管方腔圆柱绕流报告.docx_第6页
第6页 / 共25页
弯管方腔圆柱绕流报告.docx_第7页
第7页 / 共25页
弯管方腔圆柱绕流报告.docx_第8页
第8页 / 共25页
弯管方腔圆柱绕流报告.docx_第9页
第9页 / 共25页
弯管方腔圆柱绕流报告.docx_第10页
第10页 / 共25页
弯管方腔圆柱绕流报告.docx_第11页
第11页 / 共25页
弯管方腔圆柱绕流报告.docx_第12页
第12页 / 共25页
弯管方腔圆柱绕流报告.docx_第13页
第13页 / 共25页
弯管方腔圆柱绕流报告.docx_第14页
第14页 / 共25页
弯管方腔圆柱绕流报告.docx_第15页
第15页 / 共25页
弯管方腔圆柱绕流报告.docx_第16页
第16页 / 共25页
弯管方腔圆柱绕流报告.docx_第17页
第17页 / 共25页
弯管方腔圆柱绕流报告.docx_第18页
第18页 / 共25页
弯管方腔圆柱绕流报告.docx_第19页
第19页 / 共25页
弯管方腔圆柱绕流报告.docx_第20页
第20页 / 共25页
亲,该文档总共25页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

弯管方腔圆柱绕流报告.docx

《弯管方腔圆柱绕流报告.docx》由会员分享,可在线阅读,更多相关《弯管方腔圆柱绕流报告.docx(25页珍藏版)》请在冰点文库上搜索。

弯管方腔圆柱绕流报告.docx

弯管方腔圆柱绕流报告

混合弯管、方腔、圆柱绕流上机实习报告

一、混合弯管

1.建模

使用Gambit软件建立2D混合弯管模型

1)建立大管模型,管径为16,弯曲处角度为90°;

2)在大管弯曲处建立小管与大管相接,管径为4;

3)划分网格:

直管段处网格大小为1,弯曲处则加密使计算更精确,网格数设置为52;

图1

4)选择求解器Fluent5/6;

5)选择大管上边界,设置为outflow;选择大管左边界,命名为inflow-cold,选择小管下边界,命名为inflow-hot,由于该求解器中无inflow的设置,可先设置为wall,再在fluent中修改;

6)导出msh文件。

2.计算

使用Fluent软件计算

1)导入msh文件,检查确定无负体积;

2)设置材料为water-liquid,密度等参数使用默认值;

3)设置边界条件,将inflow-cold边界设为velocity-inlet,速度为5m/s,温度为280K,inflow-hot边界也设为velocity-inlet,速度为8m/s,温度为350K;

4)计算精度默认为10e-3;

5)初始化条件;

6)进行迭代计算。

 

3.计算结果

从fluent中导出图像:

速度矢量分布图:

图2

速度大小分布图:

图3

流线图:

图4

温度分布图:

图5

可以看到在大管和小管流体混合区域,温度的分布是沿着流线的。

 

二、方腔环流

1.建模

使用Gambit软件建立方腔模型

1)建一个边长为1的正方形;

2)将每边均分为200份,即网格数200×200,网格大小为0.005;

图6

3)选择求解器Fluent5/6;

4)选择正方形的上边界,设置为wall,命名movewall;

5)导出msh文件。

2.计算

使用Fluent软件计算

1)导入msh文件,检查确定无负体积;

2)设置材料为water-liquid,密度为1000kg/m^3,粘性系数为0.001Ns/m^2;

3)设置movewall边界条件,设置为movingwall,绝对速度为0.1m/s,则雷诺数为Re=10e5m^2/s;

4)计算精度默认为10e-3;

5)初始化条件;

6)进行迭代计算。

 

3.计算结果

调出streamfunction即流线图,如下图所示:

图7

可以看到方腔中间形成环流,方腔的右下角、左下角及左上角分别有一个涡。

4.对比分析

分别改变上边界速度u、方腔边长D、粘性系数μ,得到不同的流线图,对比如下:

1)保持u及D不变,改变粘性系数μ,则雷诺数Re将随之改变:

增大粘性系数μ,雷诺数减小

D=1,μ=0.01,u=0.1,Re=10e4

图8

缩小粘性系数μ,雷诺数增大

D=1,μ=0.0001,u=0.1,Re=10e6

图9

可以看到在D=1,u=0.1的条件下,μ及雷诺数的改变对流线改变不大,流线图几乎没有变化,最大流函数值保持不变。

2)保持u及μ不变,改变方腔尺寸D,雷诺数Re随之改变:

缩小方腔尺寸D,雷诺数减小

D=0.1,μ=0.001,u=0.1,Re=10e4

图10

注:

由于流线图level有限,故只显示部分流线,使边角的涡显示出来,下同。

增大方腔尺寸D,雷诺数增大

D=10,μ=0.001,u=0.1,Re=10e6

图11

可以看到在μ=0.001,u=0.1的条件下,Re较小时,只能看到右下角的涡,且涡的范围较大,由于level有限,左下角涡难以显现,中心区域的环流并不很圆,而是沿着上板速度方向有变形;Re较大时,三个涡更为明显,右下角涡范围变小,左上角涡范围变大,中心区域的环流变圆,区域变大。

3)保持D及μ不变,改变上板速度u,雷诺数Re随之改变:

减小上板速度u,雷诺数减小

D=0.1,μ=0.001,u=0.01,Re=10e4

图12

增大上板速度u,雷诺数增大

D=0.1,μ=0.001,u=1,Re=10e6

图13

进一步增大上板速度

D=0.1,μ=0.001,u=10,Re=10e6

图14

在μ=0.001,D=0.1的条件下,环流及涡随雷诺数的变化趋势与μ=0.001,u=0.1时一致,当u=10m/s,即雷诺数达到10e7m^2/s时,右下角涡消失,左下角涡及左上角涡也变小,其中左上角涡形状变得较为规整,中间环流几乎占满整个方腔,中心已成为圆形流。

4)保持D不变,通过改变上板速度u和粘性系数μ,使雷诺数Re同样保持不变:

减小上板速度u和粘性系数μ

D=1,μ=0.0001,u=0.01,Re=10e5

图15

增大上板速度u和粘性系数μ

D=1,μ=0.01,u=1,Re=10e5

图16

雷诺数和方腔尺寸不变而速度有所改变时的流函数变化趋势与前两项讨论一致。

 

5)保持粘性系数μ不变,通过改变上板速度u和方腔尺寸D,使雷诺数Re同样保持不变:

减小上板速度u,增大方腔尺寸D

D=10,μ=0.001,u=0.01,Re=10e5

图17

增大上板速度u,减小方腔尺寸D

D=0.1,μ=0.001,u=1,Re=10e5

图18

雷诺数和粘性系数不变而速度有所改变时,流线改变不大,流线图几乎没有变化,最大流函数值变化较小。

6)保持上板速度u不变,通过改变粘性系数μ和方腔尺寸D,使雷诺数Re同样保持不变:

减小粘性系数μ和方腔尺寸D

D=0.1,μ=0.0001,u=0.1,Re=10e5

图19

增大粘性系数μ和方腔尺寸D

D=10,μ=0.01,u=0.1,Re=10e5

图20

雷诺数和上板速度不变而方腔尺寸和粘性系数有所改变时的流函数变化趋势与前相同。

7)改变流体材料,将流体材料设置为air:

保持方腔尺寸D及上板速度u不变

D=1,ρ=1.225,μ=1.7894e-5,u=0.1,Re=6846

图21

保持方腔尺寸D及雷诺数Re不变

D=1,ρ=1.225,μ=1.7894e-5,u=0.146,Re=10e5

图22

由图可知改变材料后流线图变化亦不大。

 

各工况具体数据见下表:

表一

编号

1

2

3

4

5

6

7

8

网格数

200

200

200

200

200

200

200

200

h

0.005

0.005

0.005

0.0005

0.05

0.005

0.005

0.005

D

1

1

1

0.1

10

1

1

1

ρ

1000

1000

1000

1000

1000

1000

1000

1000

μ

0.001

0.01

0.0001

0.001

0.001

0.001

0.001

0.001

u

0.1

0.1

0.1

0.1

0.1

0.01

1

10

Re

10e5

10e4

10e6

10e4

10e6

10e4

10e6

10e7

不变量

u、D

u、D

u、μ

u、μ

D、μ

D、μ

D、μ

迭代次数

1927

1927

1927

1590

2323

1377

2232

2022

Ψmax

9.98e-3

9.98e-3

9.98e-3

1.24e-3

5.35e-2

1.2e-3

5.32e-2

0.21

表一续

编号

9

10

11

12

13

14

15

16

网格数

200

200

200

200

200

200

200

200

h

0.005

0.005

0.0005

0.05

0.0005

0.05

0.005

0.005

D

1

1

0.1

10

0.1

10

1

1

ρ

1000

1000

1000

1000

1000

1000

1.225

1.225

μ

0.0001

0.01

0.001

0.001

0.0001

0.01

1.79e-5

1.79e-5

u

0.01

1

1

0.01

0.1

0.1

0.1

0.146

Re

10e5

10e5

10e5

10e5

10e5

10e5

6846

10e5

不变量

D、Re

D、Re

μ、Re

μ、Re

u、Re

u、Re

迭代次数

1377

2232

1937

1884

1590

2323

1927

2016

Ψmax

1.2e-3

5.32e-2

9.96e-3

9.98e-3

1.24e-3

5.35e-2

9.98e-3

1.35e-2

由以上各项对比可以看出初步的规律:

①当上板速度u和方腔尺寸D均不变或雷诺数Re和粘性系数μ均不变时,流线图几乎不变;

②当四项主要参数中有两项变小,另两项保持不变时,流函数值减小,流线图中涡变得不明显;

③当四项主要参数中有两项变大,另两项保持不变时,流函数值增大,流线图中三个涡变得明显,中间环流趋于圆形。

 

三、圆柱绕流

1.建模

使用Gambit软件建立圆柱绕流模型

1)流场区域为x∈(-11.5,20),y∈(-12.5,12.5);

2)圆柱直径为1,圆心位于原点;

3)划分网格:

将整个流场区域划分为9个部分;其中圆柱周围再细分为4部分,每小部分网格数为25×25;其余矩形部分网格大小为0.2;

图23

图24

4)选择求解器Fluent5/6;

5)选择流场区域左边界,设置为inlet,先设置为wall,再在fluent中修改;选择右边界,命名为outlet,设置为outflow,中间圆柱边界设置为wall;

6)导出msh文件。

2.计算

使用Fluent软件计算

1)导入msh文件,检查确定无负体积;

2)设置材料密度为150kg/m^3,粘性系数为1Ns/m^2,进口流体速度为1m/s,则雷诺数为Re=150m^2/s;

3)采用定常算法,计算精度默认为10e-3;也可采用非定常算法,timestepsize可设为0.2;

4)初始化条件;

5)进行迭代计算。

3.计算结果

定常算法

涡线图:

图25

流线图:

图26

非定常算法:

涡线图

图27

流线图

图28

可以看到在圆柱后方出现了交替的两排涡,非定常算法所得的结果更精确。

四、小结

1.可使用Gambit建模,得到mesh文件,再导入Fluent中计算,用Gambit建模更方便简易;

2.在Fluent中,可通过改变材料密度、粘性系数、流体速度等改变雷诺数,以改变流体性质;可调出速度大小分布图、矢量图、流线图、涡线图等,通过改变level数调整数据分级,以改变图像的显示,如方腔环流中只显示一部分流线以使右下角的涡得以显示。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 表格模板 > 合同协议

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2