基于TMS320F2812 永磁同步电机交流调速系统实验文档格式.docx

上传人:b****1 文档编号:4085869 上传时间:2023-05-02 格式:DOCX 页数:29 大小:448.45KB
下载 相关 举报
基于TMS320F2812 永磁同步电机交流调速系统实验文档格式.docx_第1页
第1页 / 共29页
基于TMS320F2812 永磁同步电机交流调速系统实验文档格式.docx_第2页
第2页 / 共29页
基于TMS320F2812 永磁同步电机交流调速系统实验文档格式.docx_第3页
第3页 / 共29页
基于TMS320F2812 永磁同步电机交流调速系统实验文档格式.docx_第4页
第4页 / 共29页
基于TMS320F2812 永磁同步电机交流调速系统实验文档格式.docx_第5页
第5页 / 共29页
基于TMS320F2812 永磁同步电机交流调速系统实验文档格式.docx_第6页
第6页 / 共29页
基于TMS320F2812 永磁同步电机交流调速系统实验文档格式.docx_第7页
第7页 / 共29页
基于TMS320F2812 永磁同步电机交流调速系统实验文档格式.docx_第8页
第8页 / 共29页
基于TMS320F2812 永磁同步电机交流调速系统实验文档格式.docx_第9页
第9页 / 共29页
基于TMS320F2812 永磁同步电机交流调速系统实验文档格式.docx_第10页
第10页 / 共29页
基于TMS320F2812 永磁同步电机交流调速系统实验文档格式.docx_第11页
第11页 / 共29页
基于TMS320F2812 永磁同步电机交流调速系统实验文档格式.docx_第12页
第12页 / 共29页
基于TMS320F2812 永磁同步电机交流调速系统实验文档格式.docx_第13页
第13页 / 共29页
基于TMS320F2812 永磁同步电机交流调速系统实验文档格式.docx_第14页
第14页 / 共29页
基于TMS320F2812 永磁同步电机交流调速系统实验文档格式.docx_第15页
第15页 / 共29页
基于TMS320F2812 永磁同步电机交流调速系统实验文档格式.docx_第16页
第16页 / 共29页
基于TMS320F2812 永磁同步电机交流调速系统实验文档格式.docx_第17页
第17页 / 共29页
基于TMS320F2812 永磁同步电机交流调速系统实验文档格式.docx_第18页
第18页 / 共29页
基于TMS320F2812 永磁同步电机交流调速系统实验文档格式.docx_第19页
第19页 / 共29页
基于TMS320F2812 永磁同步电机交流调速系统实验文档格式.docx_第20页
第20页 / 共29页
亲,该文档总共29页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

基于TMS320F2812 永磁同步电机交流调速系统实验文档格式.docx

《基于TMS320F2812 永磁同步电机交流调速系统实验文档格式.docx》由会员分享,可在线阅读,更多相关《基于TMS320F2812 永磁同步电机交流调速系统实验文档格式.docx(29页珍藏版)》请在冰点文库上搜索。

基于TMS320F2812 永磁同步电机交流调速系统实验文档格式.docx

图2-2永磁同步电机d-q坐标系下的等效模型

在上述假定下,PMSM在d-q坐标系下的电机方程如下:

定子磁链方程:

(2-1)

Ψf是转子磁钢在定子绕组上的耦合磁链;

Ld、Lq是d-q坐标系上的等效电枢电感分量;

id、iq是d-q坐标系上的电枢电流分量。

定子电压方程:

(2-2)

p是微分算子;

rs是电枢绕组电阻;

ω是转速;

Ψd、Ψq是d-q坐标系上的磁链;

ud、uq是定子在d、q轴上的电压。

将式(2-1)代入式(2-2)得:

(2-3)

输出电磁转矩方程:

(2-4)

其中,pm是电机极对数;

Te是输出电磁转矩。

把式(2-1)代入(2-4)得:

(2-5)

机械运动方程:

(2-6)

ωm是转子机械角速度;

J是电机与负载的转动惯量之和;

TL是负载转矩。

d-q坐标系的旋转角频率(即转子电角速度)和电机转子机械角速度之间的关系为:

(2-7)

对于普通的永磁同步电机,在Ld=Lq=L时,凸极转矩项pm(Ld-Lq)idiq为零。

由式(2-5)、(2-6)和(2-7)写成状态方程形式见式(2-8)。

(2-8)

由式(2-8)中可以看出,在永磁同步电动机模型中,转子机械角速度ωm和d-q轴上的电枢电流分量id、iq相互耦合,而且方程为非线性方程,因此不能简单的通过调节电枢电流来直接控制电机的电磁转矩,必须进行矢量解耦控制。

2.2PMSM矢量控制原理

调速系统的目的是要实际转速能够快速、稳定地跟踪给定转速。

矢量控制的目的是为了改善转矩控制性能,而最终实施仍然是落实在对定子电流(交流量)的控制上。

将转子上的d-q坐标系定为参考坐标系,就可以将电流变换为d、q轴上的两个电枢电流量id、iq,根据(2-5)式可以看出,通过控制q轴电流iq即可完全控制电机转矩Te。

图2-3永磁同步电动机矢量变换原理图

在电机矢量控制中,电流id为电机励磁电流给定值,可以根据实际控制要求设定;

电流iq为电机转矩电流给定量,这一给定量为直流量,与转矩大小成正比。

进行d、q反变换必须先确定了iq、id的值,从而得到应该施加于定子三相电枢绕组电流的给定值的大小。

2.3永磁同步电机的坐标变换

为了简化和求解永磁同步电动机的数学模型的方程,一般使用电机坐标变换理论对永磁同步电机的基本方程进行线性变化来实现电机数学模型的解耦。

常用的坐标系有:

三相静止坐标系ABC、二相静止坐标系αβ、二相旋转坐标系MT。

下面分别对各坐标系之间进行简单的变换。

2.3.1Clarke变换

三相静止A-B-C坐标系与两相静止α-β坐标系之间的变换,称为Clarke变换,也可以叫做3/2变换。

其主要思想是一个旋转矢量从A-B-C坐标系变换到两α-β坐标系,为方便起见α轴与a轴重合。

图2-4为a、b、c和α、β两个坐标系。

图2-4二相静止和旋转坐标系与磁动势空间矢量

设二相电机系统各相绕组的有效匝数都为N2,三相电机系统各相绕组的有效匝数都为N3,且磁动势波形为正弦波,当三相总磁动势等于二相总磁动势时,两种绕组其瞬时磁动势在α、β轴上的分量应相等。

(2-9)

(2-10)

(2-11)

将(2-9)(2-10)(2-11)合并,写成矩阵形式,有

(2-12)

其中,C3/2是三相静止坐标系到二相静止坐标系的变换矩阵。

在满足功率不变的情况下,有:

(2-13)

由单位矩阵C3/2C3/2-1=E,可得,N3/N2=

和K=

,代入上式得:

(2-14)

(2-15)

2.3.2Park变换

一个旋转矢量从α-β垂直坐标系变到d-q旋转坐标系,称做Park变换。

 

图2-5二相静止和旋转坐标系与磁动势空间矢量

二相静止坐标系α、β和二相旋转坐标系d,q之间的关系如图2-5所示。

根据图形,有:

(2-16)

(2-17)

由(2-16)、(2-17)变换得:

(2-18)

(2-19)

把(2-18)、(2-19)写成矩阵形式,有:

(2-20)

根据Clarke变换和Park变换,可以得到从三相坐标系到二相旋转坐标系的变换式:

(2-21)

2.4电压空间矢量脉宽调制技术基本原理

电压空间矢量SVPWM技术就是使逆变器向电机提供变频电源,并能保证电机形成定子磁链圆,从而实现电机的变频调速。

其从电动机的角度出发,着眼点在于如何使电动机获得圆形磁场。

与正弦脉宽调制(SPWM)技术相比,SVPWM在输出电压或电机线圈中的电流中都将产生更少的谐波,降低了电磁转矩脉动,减小了电流波形畸变,提高了对电源逆变器直流供电电源的利用效率,更易于数字化的实现,是现代伺服系统理想的调制技术。

一种典型的三相电压源逆变器的结构如图2-6所示。

图2-6三相电源逆变结构

图中所示,Q1到Q6是6个功率晶体管IGBT,Va、Vb、Vc是逆变器的输出电压,它们分别被a,a'

,b,b'

,c,c'

这6个控制信号所控制,将决定Va、Vb、Vc三相输出电压的波形情况。

当上臂桥开关元件开通时,a、b或c为1,相应的下臂桥开关元件被关断;

当上臂桥开关元件关断时,a、b或c为0,相应的下臂桥开关元件被开通。

三相逆变桥开关量a、b、c,线电压Vab、Vac、Vbc和相电压Va、Vb、Vc,它们之间的关系有:

(2-22)

(2-23)

式中:

Vdc为电压源逆变器的直流供电电压。

因为开关量[a,b,c]有8个不相同的组合值,000、001、010、011、100、101、110、111,其中000、111两种模式的逆变器输出为零,称为零状态。

开关状态8种不同的组合对应的,输出的相电压和线电压也有8种对应的组合。

开关量[a、b、c]与输出的线电压和相电压之间的对应关系见表2-1。

表2-1功率晶体管的开关状态和与之对应的输出线电压和相电压的关系

a

b

c

Va

Vb

Vc

VAB

VBC

VCA

1

2Vdc/3

-Vdc/3

Vdc

-Vdc

Vdc/3

-2Vdc/3

三相定子电压通过Clark变换可以得到二相静止坐标系下的α轴、β轴的电压分量,如式(2-24)所示。

表2-2列出基本电压矢量与两相坐标系下的电压值。

(2-24)

表2-2开关状态与空间矢量

2.5本章小结

本章主要阐述了永磁同步电动机d-q坐标系下的数学模型的基础上,根据矢量控制理论,采用id=0的解耦方式的控制策略,保证了用最小的电流幅值得到最大的输出转矩。

给出了三相静止坐标系、α-β坐标系和d-q旋转坐标系之间的坐标变换公式,并重点给出电压空间矢量脉宽调制(SVPWM)方式的基本原理及其实现算法,与传统的SPWM相比较,空间矢量脉宽调制SVPWM从电机的角度出发,在空间形成一个圆形磁场,提高了直流电压的利用率,即具有更宽的线性工作范围,具有实现交流侧正弦化、开关损耗小、调频范围广、调速方法灵活等特点。

3.硬件平台部分

3.1概况

主要介绍应用TI公司高性能DSP芯片一一TMS320F2812实现高速全数字交流永磁同步电机的控制。

文中介绍了TMS320F2812的特点、控制系统的硬件组成以及系统软件的实现。

eMCP1000运动控制系统实验装置是针对高校机电类、控制类、自动化专业的本科生、研究生设计的一套多功能实验装置。

利用该实验装置可以完成以交流异步电机、交流永磁同步电机、无刷直流电机为驱动电机的调速系统实验。

该实验装置提供丰富的信号接口资源,以支持我们学生完成演示型、验证型、设计型和综合型实验。

eMCP1000N为eMCP1000的网络版,支持运动控制系统实验装置的网络控制功能。

eMCP1000(N)主控挂箱功能接口开放,支持用户对本挂箱功能的再次开发。

3.2系统硬件的总体结构

图3-1所示为系统硬件结构框图。

硬件电路可以分为两部分:

主控电路、功率驱动电路。

主控电路以TMS320F2812为核心,以及仿真接口电路、电平转换电路、外部存储器扩展电路的外围电路。

功率驱动电路包括电源逆变电路、电流检测电路、速度检测电路和故障保护电路等。

下面对主要电路进行详细介绍。

图3-1系统硬件结构框图

3.3S320F2812芯片特点

TMS2812F2812功能比单片机强大的多,TMS320F2812是美国TI公司推出的C2000平台上的定点32位DSP芯片,适合用于工业控制,电机控制等,用途广泛,应该相当于单片的升级版[9]。

其主要性能特点有:

(1)高性能静态CMOS(StaticCMOS)技术

1 150MHz(时钟周期6.67ns)(最大)

2 低功耗(核心电压1.8V,I/O口电压3.3V)

3 Flash编程电压3.3V

(2)片内存储器

4 8K×

16位的Flash存储器

5 1K×

16位的OTP型只读存储器

6 L0和L1:

两块4K×

16位的单口随机存储器(SARAM)

7 H0:

一块8K×

16位的单口随机存储器

8 M0和M1:

两块1K×

(3)支持JTAG边界扫描(BoundaryScan)

(4)高性能的32位中央处理器(TMS320C28x)

9 16位×

16位和32位×

32位乘且累加操作

10 16位×

16位的两个乘且累加

11 哈佛总线结构(HarvardBusArchitecture)

12 强大的操作能力

13 迅速的中断响应和处理

14 统一的寄存器编程模式

15 可达4兆字的线性程序地址

16 可达4兆字的数据地址

17 代码高效(用C/C++或汇编语言)

18 与TMS320F24x/LF240x处理器的源代码兼容

(5)外部存储器接口(仅F2812有)

19 有多达1MB的存储器

20 可编程等待状态数

21 可编程读/写选通计数器(StrobeTiming)

22 三个独立的片选端

(6)12位的ADC,16通道

23 2×

8通道的输入多路选择器

24 两个采样保持器

25 单个的转换时间:

200ns

26 单路转换时间:

60ns

(7)根只读存储器(BootROM)4K×

16位

27 带有软件的Boot模式

28 标准的数学表

(8)时钟与系统控制

29 支持动态的改变锁相环的频率

30 片内振荡器

31 看门狗定时器模块

(9)128位的密钥(SecurityKey/Lock)

32 保护Flash/OTP和L0/L1SARAM

33 防止ROM中的程序被盗

(10)马达控制外围设备

34 两个事件管理器(EVA、EVB)

35 与C240兼容的器件

(11)三个外部中断

(12)外部中断扩展(PIE)模块

36 可支持96个外部中断,当前仅使用了45个外部中断

(13)开发工具

37 ANSIC/C++编译器/汇编程序/连接器

38 支持TMS320C24x/240x的指令

39 代码编辑集成环境

40 DSP/BIOS

41 JTAG扫描控制器(TI或第三方的)

42 硬件评估板

(14)3个32位的CPU定时器

(15)串口外围设备

43 串行外围接口(SPI)

44 两个串行通信接口(SCIs),标准的UART

45 改进的局域网络(eCAN)

46 多通道缓冲串行接口(McBSP)和串行外围接口模式

(16)最多有56个独立的可编程、多用途通用输入/输出(GPIO)引脚

(17)低功耗模式和节能模式

47 支持空闲模式、等待模式、挂起模式

48 停止单个外围的时钟

(18)高级的仿真特性

49 分析和设置断点的功能

50 实时的硬件调试

(19)封装方式

51 带外部存储器接口的179球形触点BGA封装

52 带外部存储器接口的176引脚低剖面四芯线扁平LQFP封装

53 没有外部存储器接口的128引脚贴片正方扁平PBK封装

(20)温度选择

54 A:

-40℃~+85℃

55 S:

-40℃~+125℃

C28x系列芯片的功能框图如图3-2所示。

图3-2C28x系列芯片的功能框图

TMS320F2812数字信号处理器是在F240X的基础上开发的高性能定点芯片。

高速的处理能力和外设结构使得这种处理器更适合于电机以及其他运动控制系统应用中。

与C240X相比较,其主要特点如下:

(1)采用高性能的静态CMOS技术,主频可以工作到150MIPS,使得指令周期缩短到6.67ns(150MHZ),从而提高了控制器的实时控制能力。

并采用了32位操作,从而大大提高了处理能力。

(2)低损耗,供电电压降为1.8V(内核)和3.3V(1/O)。

(3)可用C/C++以及汇编编译和连接,并且支持TMS320C24x/240x指令,兼容240x代码,使得C24x和240x用户可以方便使用。

(4)片内高达128K字的FLASH程序存储器、18K的SARAM和4K的ROM。

(5)可外扩的外部存储器总共可达IM。

(6)12位A/D转换器最小转换时间位80ns。

(7)增多一个串行通信接口(SCI)。

(8)增加了McBSP(多通道带缓冲接口)功能。

(9)两个事件管理器模块是与240x兼容的。

3.4技术条件

实验台主要包括:

功率实验箱、控制箱、电源箱、电动机-负载机组、柜体,如图3-3所示。

该实验台的尺寸为:

1000mm(长)300mm(宽)693mm(高)。

整机容量:

700VA,工作电源:

220VAC/50Hz/3A。

图3-3实验台外观图

3.5本章小结

本章以TMS320F2812为核心进行了系统硬件电路的设计,包括主电路、驱动电路、检测电路等等。

采用的智能功率模块IPM,大大提升了系统的可靠与安全性。

4.软件平台部分

4.1本地设计实验

实验设备:

eMCP1000或eMCP1000N实验装置。

仿真器:

ICETEK-XDS1000(需配有专用转接线)。

编译器:

CCS4.2。

PC系统:

WindowsXP/WindowsVista/Windows7操作系统(需安装上编译器)。

4.2系统主程序

TI公司为DSP的开发提供了功能齐全的集成编译环境CCS,即可以用汇编语言编程,也可以C语言来编程,也可以汇编语言和C语言混合编程。

通过它开发人员可以充分应用DSP的强大功能。

在本设计中采用C语言和汇编语言混合编程的方法。

程序结构清晰简单,易于调试。

初始化系统的各类寄存器以及初始化变量是控制系统主程序主要任务,比如对看门狗模块、事件管理器模块、时钟模块、A/D转换模块和I/O接口的初始化,波形发生器和定时计数器的初始化以及中断服务程序的初始化等。

主程序流程图如图4-1所示。

图4-1主程序流程图

4.3PWM中断服务程序

当中央处理器正在处理内部数据时,外界发生了紧急情况,要求CPU暂停当前的工作转去处理这个紧急事件。

处理完毕后,再回到原来被中断的地址,继续原来的工作,这样的过程称为中断。

系统主程序初始化之后,TMS320F2812的运行由PWM中断服务程序控制,主要有电流采样及控制单元、坐标变换单元以及SVPWM调制单元。

图4-2中断子程序流程图

(1)电流采样

PWM中断服务程序过程中的,进入定时器下溢中断后,然后选择采样通道并启动A/D转换,转换成的数据存入数据寄存器中,如图4-3所示。

图4-3电流采样流程图

(2)坐标变换

由于Clarke变换与Park变换流程相似,以Park变换为例,图4-4Park变换程序流程图。

图4-4Park变换程序实现流程

(3)SVPWM波形成

SVPWM波生成程序流程如图4-5所示。

图4-5SVPWM生成程序流程图

4.4本章小结

本章主要阐述了整个伺服控制系统的软件设计,主要包括主程序设计和中断服务程序的设计。

主程序单元主要是完成伺服系统硬件、软件变量和各种伺服控制寄存器的初始化。

中断服务程序是系统软件的核心部分,主要完成电流采样、坐标变换、SVPWM。

5.实验项目及操作结果

5.1实验操作

实验项目:

正弦波永磁同步电动机自控变频调速系统实验

实验操作步骤如下:

1)搭建本地实验环境。

2)将仿真器(ICETEK-XDS1000)的一端连接到实验装置的JTAG接口上,另一端通过USB延长线连接到上位机机箱的USB接口上。

3)实验装置上电。

4)在上位机打开CCS的StupCCStudio,选择AdvancedF2812ICETEK-XDS1000Emulator,保存后进入CCStudio。

5)在CCStudio中连接实验装置,打开调试工程,修改、下载、运行程序,进行代码的反复调试。

6)在CCStudio中停止运行程序,关闭CCStudio。

7)实验装置断电。

实验过程中需要添加头文件,我们在编译运行自己的程序中发现系统自带的头文件不足,需要添加与程序中对应的函数的头文件,为此我们做了很多次尝试,最终程序编译没有错误。

用CCS4.2建立的工程已经编译通过,并且生成了XXX.out文件如下图所示。

5.2实验结果

观测到的结果如下:

图5-1a相稳态电流波形

图5-2A相稳态电压波形

六个扇区的SVPWM波形如下图所示,其中纵轴为电压轴,1V/格,横轴为时间轴,25ms/格。

图5-3第一扇区波形图5-4第二扇区波形

图5-5第三扇区波形图5-6第四扇区波形

图5-7第五扇区波形图5-8第六扇区波形

5.3本章小结

本章主要给出了测试结果,包括SVPWM六个扇区的波形、空载时相电流及相电压波形。

这些测试结果证明了矢量控制的可行性。

6.实验过程遇到的问题及解决方案

问:

开发板和仿真器通电顺序有没有要求?

断电顺序呢?

答:

1、通常是先给开发板上电,再给仿真器上电,关电则反之。

2、有些文件的初始化占用资源冲突,这时候复位一下CPU(Debug---Reset 

CPU)就可以了。

打开一个工程,为何提示:

找不到这个工程文件,是否要创建一个?

CCS不支持

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 成人教育 > 电大

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2