各配分函数的计算PPT资料.ppt

上传人:wj 文档编号:470262 上传时间:2023-04-29 格式:PPT 页数:97 大小:1.90MB
下载 相关 举报
各配分函数的计算PPT资料.ppt_第1页
第1页 / 共97页
各配分函数的计算PPT资料.ppt_第2页
第2页 / 共97页
各配分函数的计算PPT资料.ppt_第3页
第3页 / 共97页
各配分函数的计算PPT资料.ppt_第4页
第4页 / 共97页
各配分函数的计算PPT资料.ppt_第5页
第5页 / 共97页
各配分函数的计算PPT资料.ppt_第6页
第6页 / 共97页
各配分函数的计算PPT资料.ppt_第7页
第7页 / 共97页
各配分函数的计算PPT资料.ppt_第8页
第8页 / 共97页
各配分函数的计算PPT资料.ppt_第9页
第9页 / 共97页
各配分函数的计算PPT资料.ppt_第10页
第10页 / 共97页
各配分函数的计算PPT资料.ppt_第11页
第11页 / 共97页
各配分函数的计算PPT资料.ppt_第12页
第12页 / 共97页
各配分函数的计算PPT资料.ppt_第13页
第13页 / 共97页
各配分函数的计算PPT资料.ppt_第14页
第14页 / 共97页
各配分函数的计算PPT资料.ppt_第15页
第15页 / 共97页
各配分函数的计算PPT资料.ppt_第16页
第16页 / 共97页
各配分函数的计算PPT资料.ppt_第17页
第17页 / 共97页
各配分函数的计算PPT资料.ppt_第18页
第18页 / 共97页
各配分函数的计算PPT资料.ppt_第19页
第19页 / 共97页
各配分函数的计算PPT资料.ppt_第20页
第20页 / 共97页
亲,该文档总共97页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

各配分函数的计算PPT资料.ppt

《各配分函数的计算PPT资料.ppt》由会员分享,可在线阅读,更多相关《各配分函数的计算PPT资料.ppt(97页珍藏版)》请在冰点文库上搜索。

各配分函数的计算PPT资料.ppt

计算时必须假定结构的模型,而人们对物质结构的认识也在不断深化,这势必引入一定的近似性。

另外,对大的复杂分子以及凝聚体系,计算尚有困难。

该方法的优点:

将体系的微观性质与宏观性质联系起来,对于简单分子计算结果常是令人满意的。

不需要进行复杂的低温量热实验,就能求得相当准确的熵值。

(1)定位体系和非定位体系(按粒子是否可分辨),定位体系(localizedsystem),定位体系又称为定域子体系,这种体系中的粒子彼此可以分辨。

例如,在晶体中,粒子在固定的晶格位置上作振动,每个位置可以想象给予编号而加以区分,所以定位体系的微观态数是很大的。

3、统计体系的分类,非定位体系(non-localizedsystem),非定位体系又称为离域子体系,基本粒子之间不可区分。

例如,气体的分子,总是处于混乱运动之中,彼此无法分辨,所以气体是非定位体系,它的微观状态数在粒子数相同的情况下要比定位体系少得多。

3、统计体系的分类,

(1)定位体系和非定位体系(按粒子是否可分辨),独立粒子体系(assemblyofindependentparticles),独立粒子体系是本章主要的研究对象,粒子之间的相互作用非常微弱,因此可以忽略不计,所以独立粒子体系严格讲应称为近独立粒子体系。

这种体系的总能量应等于各个粒子能量之和,即:

(2)独立粒子体系和相依粒子体系:

按粒子间有无作用力,3、统计体系的分类,

(2)独立粒子体系和相依粒子体系:

按粒子间有无作用力,3、统计体系的分类,相依粒子体系(assemblyofinteractingparticles),相依粒子体系又称为非独立粒子体系,体系中粒子之间的相互作用不能忽略,体系的总能量除了包括各个粒子的能量之和外,还包括粒子之间的相互作用的位能,即:

目前,统计主要有三种:

1、一种是Maxwell-Boltzmann统计,通常称为Boltzmann统计。

1900年Plonck提出了量子论,引入了能量量子化的概念,发展成为初期的量子统计。

在这时期中,Boltzmann有很多贡献,开始是用经典的统计方法,而后来又有发展,加以改进,形成了目前的Boltzmann统计。

3、1924年以后有了量子力学,使统计力学中力学的基础发生改变,随之统计的方法也有改进,从而形成了玻色-爱因斯坦(Bose-Einstein)统计和费米-狄拉克(Fermi-Dirac)统计,分别适用于不同体系。

但这两种统计在一定条件下通过适当的近似,可与Boltzmann统计得到相同结果。

2、系综理论(吉布斯统计),适用于粒子之间有作用力的体系。

概率(probability)指某一件事或某一种状态出现的机会大小。

热力学概率体系在一定的宏观状态下,可能出现的微观总数,通常用表示。

4、统计热力学的基本假定,4、统计热力学的基本假定,等概率假定,例如,某宏观体系的总微态数为,则每一种微观状态P出现的数学概率都相等,即:

对于U,V和N确定的某一宏观体系,任何一个可能出现的微观状态,都有相同的数学概率,所以这假定又称为等概率原理。

7.2Boltzmann统计,1、定位体系的微态数和最概然分布,2、Boltzmann公式的讨论:

非定位体系的最概然分布,3、Boltzmann公式的其它形式,4、熵和亥氏自由能的表达式,1、定位体系的微态数和最概然分布,一个由N个可区分的独立粒子组成的宏观体系,在量子化的能级上可以有多种不同的分配方式。

设其中的一种分配方式为:

(1)定位体系的微态数:

1、定位体系的微态数和最概然分布,这种分配的微态数为:

分配方式有很多,总的微态数为:

无论哪种分配都必须满足如下两个条件:

每种分配的值各不相同,但其中有一项最大值,在粒子数足够多的宏观体系中,可以近似用来代表所有的微观数,这就是最概然分布。

问题在于如何在两个限制条件下,找出一种合适的分布,才能使有极大值,在数学上就是求

(1)式的条件极值的问题。

即:

(2)定位体系的最概然分布:

1、定位体系的微态数和最概然分布,首先用Stiring公式(398页)将阶乘展开,再用Lagrange乘因子法,求得最概然的分布为:

式中和是Lagrange乘因子法中引进的待定因子。

用数学方法可求得:

所以最概然分布公式为:

1、定位体系的最概然分布,2、非定位体系的最概然分布,能量是量子化的,但每一个能级上可能有若干个不同的量子状态存在,反映在光谱上就是代表某一能级的谱线常常是由好几条非常接近的精细谱线所构成。

量子力学中把能级可能有的微观状态数称为该能级的简并度,用符号表示。

简并度亦称为退化度或统计权重。

(1)简并度(degeneration),例如,气体分子平动能的公式为:

式中分别是在轴方向的平动量子数,当则只有一种可能的状态,则,是非简并的。

(1)简并度(degeneration),这时,在相同的情况下,有三种不同的微观状态,则。

(1)简并度(degeneration),设有N个粒子的某定位体系的一种分布为:

(2)有简并度时定位体系的微态数,

(2)有简并度时定位体系的微态数,先从N个分子中选出N1个粒子放在能极上,有种取法;

但能极上有个不同状态,每个分子在能极上都有种放法,所以共有种放法;

这样将N1个粒子放在能极上,共有种微态数。

依次类推,这种分配方式的微态数为:

(2)有简并度时定位体系的微态数,

(2)有简并度时定位体系的微态数,由于分配方式很多,所以在U、V、N一定的条件下,所有的总微态数为:

求和的限制条件仍为:

与不考虑简并度时的最概然分布公式相比,只多了项。

再采用最概然分布概念,用Stiring公式和Lagrange乘因子法求条件极值,得到微态数为极大值时的分布方式为:

(2)有简并度时定位体系的微态数,Boltzmann最概然分布公式,(3)非定位体系的最概然分布,非定位体系由于粒子不能区分,它在能级上分布的微态数一定少于定位体系,所以对定位体系微态数的计算式进行等同粒子的修正,即将计算公式除以。

则非定位体系在U、V、N一定的条件下,所有的总微态数为:

(3)非定位体系的最概然分布,同样采用最概然分布的概念,用Stiring公式和Lagrange乘因子法求条件极值,得到微态数为极大值时的分布方式(非定位)为:

由此可见,定位体系与非定位体系,最概然的分布公式是相同的。

无简并度时定位体系的最概然分布:

有简并度时定位体系的最概然分布:

有简并度时非定位体系的最概然分布,小结,3、Boltzmann公式的其它形式,

(1)将i能级和j能级上粒子数进行比较,用最概然分布公式相比,消去相同项,得:

(2)在经典力学中不考虑简并度,则上式成为,设最低能级为,在能级上的粒子数为,略去标号,则上式可写作:

这公式使用方便,例如讨论压力在重力场中的分布(高度分布),设各个高度温度相同气体符合理想气体,即得:

压力随高度变化公式,3、Boltzmann公式的其它形式,4、熵和亥氏自由能的表达式,根据揭示熵本质的Boltzmann公式,

(1)对于定位体系,非简并状态,4、熵和亥氏自由能的表达式,用Stiring公式展开:

4、熵和亥氏自由能的表达式,4、熵和亥氏自由能的表达式,

(2)对于定位体系,简并度为,推导方法与前类似,得到的结果中,只比

(1)的结果多了项。

(3)对于非定位体系由于粒子不能区分,需要进行等同性的修正,在相应的定位体系的公式上除以,即:

4、熵和亥氏自由能的表达式,7.4配分函数,1、配分函数的定义:

根据Boltzmann最概然分布公式(略去标号),令分母的求和项为:

q称为分子配分函数,或配分函数(partitionfunction),其单位为1。

求和项中称为Boltzmann因子。

配分函数q是对体系中一个粒子的所有可能状态的Boltzmann因子求和,因此q又称为状态和。

将q代入最概然分布公式,得:

q中的任何一项与q之比,等于分配在该能级上粒子的分数,q中任两项之比等于这两个能级上最概然分布的粒子数之比,这正是q被称为配分函数的由来。

7.4配分函数,2、非定位体系配分函数与热力学函数的关系,设总的粒子数为N,

(1)Helmholz自由能A,2、非定位体系配分函数与热力学函数的关系,

(2)熵S,或根据以前得到的熵的表达式直接得到下式:

2、非定位体系配分函数与热力学函数的关系,(3)热力学能U,或从两个表达式一比较就可得上式。

(4)Gibbs自由能G,2、非定位体系配分函数与热力学函数的关系,(5)焓H,(6)定容热容CV,根据以上各个表达式,只要知道配分函数,就能求出热力学函数值。

2、非定位体系配分函数与热力学函数的关系,根据非定位体系求配分函数与热力学函数关系相同的方法,得:

3、定位体系配分函数与热力学函数的关系,3、定位体系配分函数与热力学函数的关系,定位与非定位体系配分函数与热力学函数关系比较,定位与非定位体系配分函数与热力学函数关系比较,由上列公式可见,U,H和CV的表达式在定位和非定位体系中是一样的;

并且都含有lnq对T的偏微分或对V的偏微分,而A,S和G的表达式中,定位体系少了与有关的常数项,而这些在计算函数的变化值时是可以互相消去的。

本章主要讨论非定位体系。

4、配分函数的分离,一个分子的能量可以认为是由分子的整体运动能量即平动能,以及分子内部运动的能量之和。

分子内部的能量包括转动能()、振动能()、电子的能量()和核运动能量(),各能量可看作独立无关。

这几个能级的大小次序是:

4、配分函数的分离,平动能的数量级约为,,分子的总能量等于各种能量之和,即:

各不同的能量有相应的简并度,当总能量为i时,总简并度等于各种能量简并度的乘积,即:

则更高。

4、配分函数的分离,根据配分函数的定义,将和的表达式代入,得:

从数学上可以证明,几个独立变数乘积之和等于各自求和的乘积,于是上式可写作:

4、配分函数的分离,和分别称为平动、转动、振动、电子和原子核配分函数。

7.5各配分函数的计算及对热力学函数的贡献,1、原子核配分函数,2、电子配分函数,3、平动配分函数,5、转动配分函数,6、振动配分函数,4、单原子理想气体的热力学函数,7.5,各配分函数的计算,1、原子核配分函数,设原子核的能级为各能级的简并度分别为,根据配分函数的定义,7.5,各配分函数的计算,1、原子核配分函数,由于化学反应中,核总是处于基态,另外基态与第一激发态之间的能级间隔很大,所以一般把方括号中第二项及以后的所有项都忽略不计,则:

7.5,各配分函数的计算,1、原子核配分函数,如将核基态能级能量选为零,则上式可简化为:

即原子核的配分函数等于基态的简并度,它来源于核的自旋作用,所以又叫核自旋配分函数。

式中sn是核的自旋量子数。

由于它与温度,体积无关,所以它对U、H、Cv没有贡献,而对A、G、S有贡献。

(见7.57、7.60、7.61),各配分函数的计算,7.5,2、电子配分函数,电子能级间隔也很大,除F,Cl少数元素外,方括号中第二项也可略去。

虽然温度很高时,电子也可能被激发,但往往电子尚未激发,分子就分解了。

所以通常电子总是处于基态,则:

各配分函数的计算,7.5,2、电子配分函数,若将视为零,则,式中j是电子总的角动量量子数。

电子绕核运动总动量矩也是量子化的,沿某一选定轴上的分量可能有2j+1个取向。

各配分函数的计算,7.5,3、平动配分函数,设质量为m的粒子在体积为的立方体内运动,根据波动方程解得平动能表示式为:

式中h是普朗克常数,分别是轴上的平动量子数,其数值为的正整数。

各配分函数的计算,7.5,3、平动配分函数,将代入:

因为对所有量子数从求和,包括了所有状态,所以公式中不出现项。

在三个轴上的平动配分函数是类似的,只解其中一个,其余类推。

各配分函数的计算,7.5,3、平动配分函数,因为是一个很小的数值,所以求和号用积分号代替,得:

各配分函数的计算,3、平动配分函数,引用积分公式:

则上式得:

和有相同的表示式,只是把a换成b或c,所以:

各配分函数的计算,3、平动配分函数,该式说明,体积越大,分子平动配分函数越大,这是由于体积越大,分子平动能级差越小,分子的量子状态越多。

例423页,各配分函数的计算,4、单原子理想气体的热力学函数,由于单原子分子内部运动没有转动和振动,所以只有原子核、电子和外部的平动对热力学函数有贡献。

理想气体是非定位体系,所以它的一系列热力学函数用配分函数的计算式分别分列如下:

4、单原子理想气体的热力学函数,

(1)Helmholtz自由能A,(7.53),(7.76),第1、2项在计算时,都可以消去。

4、单原子理想气体的热力学函数,

(1)Helmholtz自由能A,

(2)熵,4、单原子理想气体的热力学函数,4、单原子理想气体的热力学函数,因为对热力学能没有贡献,只有平动能有贡献,所以:

(3)热力学能,4、单原子理想气体的热力学函数,(4)定容热容,这个结论与经典的能量均分原理的结果是一致的,单原子分子只有三个平动自由度,每个自由度贡献,则N个粒子共有。

4、单原子理想气体的热力学函数,(5)化学势,对于理想气体,代入A的表示式,得:

4、单原子理想气体的热力学函数,(5)化学势,当处于标准态时,则:

从该式可看出,一定时,只是T的函数。

两式相减得:

4、单原子理想气体的热力学函数,(6)理想气体的状态方程,将A的表示式代入,由于其它项均与体积无关,只有平动项中有一项与V有关,代入即得理想气体状态方程。

用统计热力学的方法可以导出理想气体状态方程,这是经典热力学无法办到的。

单原子分子的转动配分函数等于1,异核双原子分子、同核双原子分子和线性多原子分子的有类似的形式,而非线性多原子分子的表示式较为复杂。

(1)异核双原子分子的,设其为刚性转子绕质心转动,能级公式为:

式中J是转动能级量子数,I是转动惯量,设双原子质量分别为,r为核间距,则:

5、转动配分函数,5、转动配分函数,转动角动量在空间取向也是量子化的,所以能级简并度为:

称为转动特征温度,因等式右边项具有温度的量纲。

将代入表达式,得:

5、转动配分函数,从转动惯量I求得。

除H2外,大多数分子的很小,因此用积分号代替求和号,并令,代入后得:

(2)同核双原子和线性多原子分子的(是对称数,旋转微观态重复的次数),(3)非线性多原子分子的,分别为三个轴上的转动惯量。

例429页,5、转动配分函数,6、振动配分函数,

(1)双原子分子的,设分子作只有一种频率的简谐振动,振动是非简并的,其振动能为:

式中v为振动量子数,当v=0时,称为零点振动能,6、振动配分函数,令称为振动特征温度,也具有温度量纲,则:

6、振动配分函数,振动特征温度是物质的重要性质之一,越高,处于激发态的百分数越小,表示式中第二项及其以后项可略去不计。

也有的分子较低,如碘的,则的项就不能忽略。

在低温时,则,引用数学近似公式:

6、振动配分函数,则的表示式为:

将零点振动能视为零,即则:

6、振动配分函数,多原子分子振动自由度为:

(2)多原子分子的,为平动自由度,为转动自由度,n为原子总数。

因此,线性多原子分子的为:

非线性多原子分子的只要将(3n-5)变为(3n-6)即可。

各配分函数表达式,同核双原子和线性多原子分子,7.7分子的全配分函数,P434单原子、双原子、线型多原子等,化学平衡体系的公共能量标度,从自由能函数计算平衡常数,热函函数,从配分函数求平衡常数,7.8用配分函数计算和平衡常数,1、化学平衡体系的公共能量标度,7.8用配分函数计算和平衡常数,粒子的能量零点,对于同一物质粒子的能量零点,无论怎样选取,都不会影响其能量变化值的求算。

通常粒子的能量零点是这样规定的:

当转动和振动量子数都等于零时的能级定为能量坐标原点,这时粒子的能量等于零。

1、化学平衡体系的公共能量标度,公共能量标度,化学平衡体系中有多种物质,而各物质的能量零点又各不相同,所以要定义一个公共零点,通常选取0K作为最低能级,从粒子的能量零点到公共零点的能量差为。

采用公共零点后,A,G,H,U的配分函数表达式中多了项,而和p的表达式不变。

自由能函数(freeenergyfunction),称为自由能函数,因为,所以,在0K时,所以,也是自由能函数,当,又设在标准状态下,自由能函数可以从配分函数求得。

各种物质在不同温度时的自由能函数值有表可查。

2、从自由能函数计算平衡常数,求平衡常数,设任意反应,等式右边第一项是反应前后各物质自由能函数的差值,第二项的分子是0K时该反应热力学能的变化值。

2、从自由能函数计算平衡常数,a已知值和各物质的自由能函数值,倒算值。

求算值的方法,2、从自由能函数计算平衡常数,b从吉布斯自由能的定义式求,同时加一个、减一个,移项整理得:

2、从自由能函数计算平衡常数,c根据热化学中的基尔霍夫公式求,d由分子解离能D来计算,设反应为:

2、从自由能函数计算平衡常数,e由热函函数求,已知反应焓变和热函函数值,可求得值。

2、从自由能函数计算平衡常数,等式左方称为热函函数。

其数值可以通过配分函数求得。

当T为298.15K时,值有表可查。

利用热函函数值计算化学反应的焓变:

3、热函函数,设反应D+E=G,是用分子数目表示的平衡常数,q是将零点能分出以后的总配分函数。

如果将平动配分函数中的V再分出,则配分函数用f表示,求出各配分函数f值,可得到平衡常数值。

4、从配分函数求平衡常数,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2