Lecture Note of Photovaltaic TechnologyWord格式文档下载.docx

上传人:b****1 文档编号:4778662 上传时间:2023-05-04 格式:DOCX 页数:77 大小:8.54MB
下载 相关 举报
Lecture Note of Photovaltaic TechnologyWord格式文档下载.docx_第1页
第1页 / 共77页
Lecture Note of Photovaltaic TechnologyWord格式文档下载.docx_第2页
第2页 / 共77页
Lecture Note of Photovaltaic TechnologyWord格式文档下载.docx_第3页
第3页 / 共77页
Lecture Note of Photovaltaic TechnologyWord格式文档下载.docx_第4页
第4页 / 共77页
Lecture Note of Photovaltaic TechnologyWord格式文档下载.docx_第5页
第5页 / 共77页
Lecture Note of Photovaltaic TechnologyWord格式文档下载.docx_第6页
第6页 / 共77页
Lecture Note of Photovaltaic TechnologyWord格式文档下载.docx_第7页
第7页 / 共77页
Lecture Note of Photovaltaic TechnologyWord格式文档下载.docx_第8页
第8页 / 共77页
Lecture Note of Photovaltaic TechnologyWord格式文档下载.docx_第9页
第9页 / 共77页
Lecture Note of Photovaltaic TechnologyWord格式文档下载.docx_第10页
第10页 / 共77页
Lecture Note of Photovaltaic TechnologyWord格式文档下载.docx_第11页
第11页 / 共77页
Lecture Note of Photovaltaic TechnologyWord格式文档下载.docx_第12页
第12页 / 共77页
Lecture Note of Photovaltaic TechnologyWord格式文档下载.docx_第13页
第13页 / 共77页
Lecture Note of Photovaltaic TechnologyWord格式文档下载.docx_第14页
第14页 / 共77页
Lecture Note of Photovaltaic TechnologyWord格式文档下载.docx_第15页
第15页 / 共77页
Lecture Note of Photovaltaic TechnologyWord格式文档下载.docx_第16页
第16页 / 共77页
Lecture Note of Photovaltaic TechnologyWord格式文档下载.docx_第17页
第17页 / 共77页
Lecture Note of Photovaltaic TechnologyWord格式文档下载.docx_第18页
第18页 / 共77页
Lecture Note of Photovaltaic TechnologyWord格式文档下载.docx_第19页
第19页 / 共77页
Lecture Note of Photovaltaic TechnologyWord格式文档下载.docx_第20页
第20页 / 共77页
亲,该文档总共77页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

Lecture Note of Photovaltaic TechnologyWord格式文档下载.docx

《Lecture Note of Photovaltaic TechnologyWord格式文档下载.docx》由会员分享,可在线阅读,更多相关《Lecture Note of Photovaltaic TechnologyWord格式文档下载.docx(77页珍藏版)》请在冰点文库上搜索。

Lecture Note of Photovaltaic TechnologyWord格式文档下载.docx

1hroftutorial

CommonTest20%

Lab10%

MiniAssignment15%

Tutorial10%

Exam45%

Cousecontents

∙Energydemandandglobalclimatechanges,

∙Propertiesofsunlight,

∙semiconductorproperties,

∙p-njunctions,

∙solarcelloperation,

∙solarcelldesign

∙solarmoduledesign

∙moduleinterconnection

∙PVsystems

Energydemandandglobalclimatechanges

TheGreenhouseeffect

Ø

IncreasinglevelsofCO2inEarth’satmosphere

(primarilyfromburningoffossilfuels).

280ppmbefore1860,355ppmtoday.

OtherGreenhousegasesarealsoincreasing

duetohumanactivity(methane).Ozone(near

theEarth’ssurface),nitrousoxides,andCFC.

CouldpotentiallyincreasetheEarth’saverage

temperatureby2-3°

Coverthenext100years.

Potentiallydisastrousformanyeco-systems

(e.g.corals,lowlyingislands,riverdeltas)

Riseinsealevel….Lostofseacoastareas,populationaffected

http:

//ukinjapan.fco.gov.uk/en/newsroom/?

view=Speech&

id=15027013

lostoffreshwatersupply

lostoffertilelands

Majorcontributortogreenhousegas:

burningoffossilfuelforelectricity

generationandtransport

Conclusion:

societyprogress>

increaseglobalclimatechanges>

instabilityetc

Solutions:

1)reduceourpollutionbyusingalternativeenergysources

thatareeco-friendlyandsustainableeghydro,wind,

geothermal,tidal,solar….

2)changeinlifestyle

3)investandinventenergysavingappliancesandmachines

ChallengesfacebyRE:

cost/kWhgeneration,geographicaldependence,intermittentsupply

andchangingclimatecausesREsuppliesunpredictable.

Windpower

Vertical–axiswindturbine(VAWT)

Advantages:

•harnesswindfromalldirectionpositionofrotorstays

•excellentpowerinslowwinds.

•windresourceisn’tcriticalsocanbeinstalledclosertobuildings

Disadvantages:

•notasefficientastheHAWTinhighwinds.

•requirebigspaceforguywirestokeepthemstable.

OthertypesofVAWT

Horizontal-axiswindturbine(HAWT)

Hydropower

Tidalpower

Biomass

Energycrops:

Woodycrops,agriculturalcrops

Wastes:

woodresidues,animalwastes,municipalsolidwaste,landfillgas…

Geothermal

•Heatfromgeothermalreservoirs(collectionofhotwater)providestheforcesthatspintheelectricalgenerators

•Twomajortypeofreservoirs-drysteam&

hotwaterreservoirs

HotspotTheories-YellowstoneNationalPark

Fuelcell

Solarenergy

AnnualamountofsolarincidentonEarth:

equivalenttoX160energystoredinprovenreservesoffossilfuel

equivalenttoX5,000Earthconsumptionoffossil,nuclearandhydro

power

Thermal

l

PV

Solarthermal

•Directconversionofsolarheattospaceheating,waterheating

•SolarCooking

•Electricitygenerationviaheatturbine

egsolartower,solarpond

Solarcollector&

solarcooker

Solartroughandsolartower

Photovoltaics

•Evolvefromspacetechnology

•Rapidadvancementthroughthesemiconductortechnology

•aboutalittleover20¢

perkilowatthour.

Energyfromsolarcellαincidentlight

αsurfacearea

•Efficiencyatpresent:

13-15%

∙Solarmodule(manysolarcellsconnectedtofirmamodule)

•Manysizeofsolarmadulesavailable,typically50W,75Wor80W

•Makeupofmanysolarcellsconnectedtogetherinseries

•Modulescanbeadduptomeettheneedsoftheusers

∙PVapplicabletoareaswithplentyofsunlightandwindy(ideal)

∙TypesofPVsystems:

Standalone,hybridandgridconnection.

PHOTOVOLTAICTECHNOLOGY

LESSON2

•Processthatconvertsunlighttoelectricity

•DevicethatcarryoutthisprocessiscalledPVcells/modules

•Notedirectheatingisnotphotovoltaicprocessegsolarcollector,solarcooker,solarpond

Particle/wavedualityoflight

•Lightbehavesasbothawaveandaparticle

•E=hf=hc/λ(E=energy,h=Planck’sconstant,c=velocityoflight)

Particlesproperties:

blackbodyRadiation

•Blackbody-idealabsorberandemitterofelectromagneticradiation.Thehottertheblackbody–themoreradiationitemits,andthepeakofthespectrummovestohigherenergy(lowerwavelength).

•Plank’sformula

•K–Boltzmann’sconstant(1.38x10-23J/K)

•ξ-Energydensityinintervalftof+df[Js/m3]

•Intensityemittedintoahemisphere

•I=intensity(W/m2)

•s-Stefan–Boltzmann’sconstant(5.67x10-8W/m2K4)

•radiationdistributionsfromperfectblackbodiesatdifferenttemperatures.Poweremittedperunitareaoftheblackbodyperunitwavelengthat6000K,4500K,3000K.

SunanditsRadiation

•Sun’senergyisderivedbythefusionofH.ThisformsHeandlargeamountsofenergy.

•TotaloutputoftheSun=4x1026W

•Powerreachingearth=1.78x1017W

•IntensityoutsideEarth’satmosphere=1367W/m2

6000Kblackbody

AM0

AM1.5

SolarRadiationattheEarth’ssurface

•Atmosphereattenuatessunlight-scatteringandadsorption.

•ThemaximumradiationreachestheEarth’ssurfacewhenthesunisdirectlyoverheadandtheskyisclear

•Theintensitydecreasesasthepathlengthoflightthroughtheatmosphereincreases.

•Describedusingtheconceptof:

•AirMass=1/cos(Æ

)whereÆ

istheanglebetweensunlightandthevertical(zenith).ExpressionlosesaccuracywhenÆ

>

75°

duetocurvatureoftheEarth.

AirMass(AM)

•AM1.5isoftenusedasastandardreferencespectrum(1000W/m2).

•Justoutsidetheatmosphereisdefinedas:

AirMasszero:

AM0(1367W/m2)

AM=1/cosθ

DirectandDiffuseRadiation

•Theatmosphereattenuatessunlightby~30%dueto:

•Rayleighscatteringbyairmolecules(verystrongatshortwavelengthsdueto1/l4dependence).

•Scatteringbyaerosolsanddustparticles.

•AbsorptionbygasessuchasO2,ozone,H2O&

CO2(reducestheintensityofthesunlight).

•Effect1and2giverisetobluesky,sunset,diffuselight.

•Thetotalradiationhastwocomponents:

directanddiffuse

•i.e.AMglobal=AMdirect+AMdiffuse

•Forexamplewhenthesunisdirectlyoverhead(AM1.0),thediffusecomponentisabout10%ofthetotal(orglobal)AM1.0spectrum.

•ThispercentageincreaseswithincreasingAMorwhenskiesarenotclear.

•Underclearskyconditions,thediffuseradiationistypically“moreblue”.

•Onacloudydaythenthespectrumis100%diffuse,andthediffuseintensityisabout20%ofthemaximumpossible.

LESSON3

•IncreasinglevelsofCO2inEarth’satmosphere(primarilyfromburningoffossilfuels).

•280ppmbefore1860,355ppmtoday.

•OtherGreenhousegasesarealsoincreasingduetohumanactivity(methane).Ozone(neartheEarth’ssurface),nitrousoxides,andCFC.

•CouldpotentiallyincreasetheEarth’saveragetemperatureby2-3°

•Potentiallydisastrousformanyeco-systems(e.g.corals,lowlyingislands,riverdeltas).

ApparentmotionoftheSun

•TheEarthorbitsthesunwithitsaxisofrotationinclinedatanangleofб=23.45°

tothenormaltotheplaneoftheorbit.

•ThismeansthattheSun’sapparentmotionacrosstheskyvariesthroughouttheyear(seasons)

DirectandDiffuseInsolationData

•Ifdataisavailablegivingthedirectanddiffusecomponentsonahorizontalplane,thecorrespondinginsolationonatiltedsurfaceatananglebtothehorizontalcanbecalculated.

•Wecanassumethediffusecomponentisindependentofthetiltangle(validforb<

45°

).

Sβ=Ssin(α+β)/sin(α)

Dec=23.45sin[(d-81)X360/365]

α=90–θ–dec[southhemisphere]

α=90–θ+dec[northhemisphere]

∙S-directcomponentonthetiltedsurface

∙S-directcomponentonthehorizontalplane

∙a-solarnoontimealtitudeofthesun

•Dec:

declinationofthesun

(TheattitudeatwhichtheSunisdirectlyoverhead),

•θ=latitude.

•d=daynumber

Solarpanel

Ifdirectanddiffusecomponentsarenotavailableandonlytheglobalinsolationonaplaneisknown:

•Thenyouneedtoknowthenumberof“sunny”and“cloudy”dayspermonth.

(i)intensityfor“sunny:

days

•I–intensityofdirectcomponentincidentonaplaneperpendiculartothesun’srays.

Diffusecomponent=10%ofI

Totalintensity=110%I

(ii)intensityfor“cloudy”days

•AssumealllightisdiffuseI=20%I

SolarRadiationinSingapore

RadiationinSingaporeinthemonthofJanuary

Singaporeinsolation

●Singaporereceives<

2/3ofthesolarradiation

●Meandailysunshinehoursfordifferentmonthsoftheyearvaryfrom33%to55%ofthemaximumpossible

●February,MarchandJulywith6.2hoursofbrightsunshine(highest)

●NovemberandDecemberwith4.5and4.4hours,respectively(lowest)

●AveragemaxsolarradiationisinFebruary(484.4

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 职业规划

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2