matlab 课程设计Word文档下载推荐.docx

上传人:b****1 文档编号:4815400 上传时间:2023-05-04 格式:DOCX 页数:23 大小:391KB
下载 相关 举报
matlab 课程设计Word文档下载推荐.docx_第1页
第1页 / 共23页
matlab 课程设计Word文档下载推荐.docx_第2页
第2页 / 共23页
matlab 课程设计Word文档下载推荐.docx_第3页
第3页 / 共23页
matlab 课程设计Word文档下载推荐.docx_第4页
第4页 / 共23页
matlab 课程设计Word文档下载推荐.docx_第5页
第5页 / 共23页
matlab 课程设计Word文档下载推荐.docx_第6页
第6页 / 共23页
matlab 课程设计Word文档下载推荐.docx_第7页
第7页 / 共23页
matlab 课程设计Word文档下载推荐.docx_第8页
第8页 / 共23页
matlab 课程设计Word文档下载推荐.docx_第9页
第9页 / 共23页
matlab 课程设计Word文档下载推荐.docx_第10页
第10页 / 共23页
matlab 课程设计Word文档下载推荐.docx_第11页
第11页 / 共23页
matlab 课程设计Word文档下载推荐.docx_第12页
第12页 / 共23页
matlab 课程设计Word文档下载推荐.docx_第13页
第13页 / 共23页
matlab 课程设计Word文档下载推荐.docx_第14页
第14页 / 共23页
matlab 课程设计Word文档下载推荐.docx_第15页
第15页 / 共23页
matlab 课程设计Word文档下载推荐.docx_第16页
第16页 / 共23页
matlab 课程设计Word文档下载推荐.docx_第17页
第17页 / 共23页
matlab 课程设计Word文档下载推荐.docx_第18页
第18页 / 共23页
matlab 课程设计Word文档下载推荐.docx_第19页
第19页 / 共23页
matlab 课程设计Word文档下载推荐.docx_第20页
第20页 / 共23页
亲,该文档总共23页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

matlab 课程设计Word文档下载推荐.docx

《matlab 课程设计Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《matlab 课程设计Word文档下载推荐.docx(23页珍藏版)》请在冰点文库上搜索。

matlab 课程设计Word文档下载推荐.docx

将上二式中的变量t消去,经过运算可:

(Ex/Eox)^2+(Ey/+E0y)^2-2(Ex/E0x)(Ey/E0y)+cosφ=sin^2φ

式中,φ=φy-φx

这个二元二次方程在一般情况下表示的几何图形是椭圆。

相位差φ和振幅比Ey/Ex的不同,决定了椭圆形状和空间取向的不同,从而就决定了光的不同偏振态。

实际上,线偏振态和圆偏振态都是椭圆偏振态的特殊情况。

本人主要承担程序的设计与编码,通过与搭档的沟通和交流理解程序设计原理,梳理出代码编写的逻辑和结构,编写代码并进行多次调试

【三】程序框图

【四】实验结果

1)线偏振光

当Ex、Ey二分量的相位差φ=mπ(m=0,±

1,±

2,?

)时,椭Eyx圆退化为一条直线,称为线偏振光。

此时有

(Ey/Ey)=(E0y/E0x)e^imπ

2)圆偏振光

当Ex、Ey的振幅相等E0x=E0y=E0,相位差φ=mπ/2(m=±

3,±

5……)时,椭圆方程退化为圆方程

Ex^2+Ex^2=E0该光称为圆偏振光。

3)椭圆偏振光

在一般情况下,光矢量在垂直传播方向的平面内大小和方向都在改变,它的末端轨迹是由

(Ex/Eox)^2+(Ey/+E0y)^2-2(Ex/E0x)(Ey/E0y)cosφ=sin^2φ

式决定的椭圆,故称为椭圆偏振光。

【五】设计中遇到的问题及解决方法

实验结果与预期有差距,图像混为一团无法观察,通过多次改变相应变量的取值,顺利解决了此问题。

【六】专业课程设计的心得体会

在学习了偏振态的基本概念后,我们对本次实验的实验原理有了一个清晰的概念,通过设计程序,仿真结果,体会了线偏振光,圆偏振光,椭圆偏振光的不同和形成条件,对与其相关的概念也有了比以往更深层的认识。

对光波偏振态有了进一步的的了解与认识,基本熟悉了matlab的编程语法及作图操作,通过实际应用对光波偏振态有了更深一步的了解和认识,我掌握圆偏振、椭圆偏振及线偏振的概念及基本特性,以及偏振态的分析方法。

.双光束干涉的仿真

双缝干涉进行计算,绘出1.单色光2.复色光3.的干涉条纹,总结双缝干涉的特点。

【二】实施方案及其原理和本人承担的工作

a)了解实验原理

b)构思matlab程序设计思路

c)设计程序

d)调试及分析仿真结果

杨氏双缝干涉实验是最早利用分波阵面法获得相干光,从而获得光波干涉现象的典型实验装置。

如下图:

本人主要承担程序的设计与代码的编写。

经过和本组组员的多次学习和交流理解程序设计原理,设计出代码编写的逻辑和结构,编写代码并让搭档提出修改意见和建议并进行调试。

【三】程序框图

【四】实验结果

设由狭缝S1和S2在P处引起的光矢量振动的振幅相同,其振动方程分别为

E1=E0osωt+φ1

E2=E0cosωt+φ2

所以光屏上任意一点的光矢量的振动方程为:

E=Epcosωt+φ1

其中

Ep=2E0C0S[φ2-φ1)/2]=2E0C0S[(πdsinφ)/λ]

因而任意一点的光强为

I=4I0C0S^2[(πdsinφ)/λ]

显然,狭缝S1和S2在P处引起的振动相位差△φ=φ2-φ1≈(2dsinφ)/λ

根据相干波相干叠加加强的条件,△φ=(2dsinφ)/λ=2kπ时,形成第k级明纹中心,即:

dsinφ=kλ时,形成第k级明纹中心。

由此可见,干涉条纹明纹中心光矢量的振动方程为:

E=2E0cosωt+φ其振幅为通过狭缝S1、S2光矢量振幅的2倍,因而明纹中心光强为狭缝S1、S2的4倍,即I=4I0

对于实验原理的理解挺清晰的但是在设计程序是却遇到了麻烦,对变量的取值不确定,经过多次试验,观察结果图像的特点,确定了比较合理的取值。

这个试验相对来说比较容易,加之有之前两次实验的经验。

对matlab已比较熟悉了、熟练了。

做实验已经变得越来越容易,不会像之前那样手忙脚乱了。

平行平板多光束干涉的仿真

对单色光(600nm)与复色光(两种颜色,如600,620nm)进行多光束干涉(要求变化R值,如R=0.046,R=0.27,R=0.64,R=0.87,R=0.99)的计算,绘出干涉条纹,观察条纹锐度;

固定入射角(如0°

,30°

角),观察选频特性。

对复色光观察自由光谱范围。

对整个仿真进行总结归纳。

平行平板多光束干涉的产生如下图:

P点光强为:

其中

本人主要承担程序代码编写,通过与搭档的沟通交流理解实验原理及程序大概流程,构思出程序逻辑结构并编写调试代码,分析实验结果的意义。

平行平板的多光束干涉如双光束干涉一样,仍是等倾条纹,其亮纹和暗纹分别为:

其相应的透射光干涉光强为:

不论对透射光还是反射光,形成亮纹和暗纹的条件与双光束完全相同,因此条纹的位置相同。

干涉场的对比度由界面的反射比来确定。

第一次编写代码时没有注意不同折射率颜色问题,后经老师提出,改正之后使程序更易于观察比较,同时也比较美观。

通过本次试验,不仅学习、了解了多光束干涉的基础知识和物理内容,熟悉诸如扩展光源的等倾干涉、自由光谱范围、分辨本领等基本概念,加深了我对所学理论知识的理解,而且巩固和深化了精密光学仪器调整和使用的许多基本技能,也让我们再一次深刻体会到科学工作者的严谨与科学知识的奥妙。

基础物理实验是一门很有意义的课程,我们通过操作各种设计精巧的实验仪器,观察神奇美妙的物理现象,不仅仅锻炼了我们的动手能力,深刻理解了理论知识。

光的矩形孔衍射

利用基尔霍夫衍射公式进行计算,入射波长为632.8nm,缝宽为1mm,光源位于系统的轴线上,要求计算远场衍射图案,近场观察距离改变衍射图案的变化;

对仿真结果进行总结分析。

a)了解实验原理

光的衍射现象是指光遇到障碍物时偏离直线传播方向的现象。

衍射现象一般分两类:

菲涅尔衍射和夫琅和费衍射。

其中夫琅和费衍射是指光源和观察者屏离开衍射物体都为无穷远时的衍射。

但因为实际做不到无穷远,所以一般要求满足光源和观察屏离开衍射物体之间的距离S都远大于a2/λ就能观察到夫琅和费衍射现象。

其中a为衍射物体的孔径,λ为光源的波长。

衍射光强的大小和形状是研究衍射光的主要特性。

而不同的衍射物体其衍射光强的大小和形状都不一样。

夫琅和费衍射公式如下:

本人主要承担程序的设计与代码的编写。

本实验,只能粗略的表现孔的大小与波长对衍射现象的影响,可以确定衍射明显度与透镜焦距长短的关系,但不能进一步说明孔的大小与波长的达到什么具体的比值才会使衍射现象更加明显。

光源和观察者屏离开衍射物体都为无穷远时的衍射,这一距离区分近场衍射和远场衍射的分界,不容易找到,经过多次试验,得到正确的值试实现了远场衍射的图像。

在做实验分析的过程中,先利用书本上的知识,不断影响我的认识。

在MATLAB进行的软件仿真式样中,可以通过更改不同的参数,进而对模拟仿真所产生的图形进行比较,可以得到差异,比较法对于研究某些物理量对物理现象的影响是十分重要和有效的。

这些工作的实行过程中,使我得到了良好的锻炼,受益颇丰。

附录1

1.光波的偏振态仿真

clearall;

c=3*10^8;

%光速,单位:

米/秒

l=5*10^(-7);

%波长,单位:

T=l/c;

%周期,单位:

t=0;

t=linspace(0,T,1000);

z=linspace(0,3,1000);

%将z的长度3分为1000等份

w=2*pi/T;

%角速度,单位:

rad/s

k=2*pi/l;

%波矢量

Eox=10;

Eoy=10;

%Eox,Eoy的最大值

a=0;

i=1;

forb=0:

pi/4:

7*pi/4%for循环,b由0到7*pi/4,依次加pi/4

Ex=Eox*cos(w*t-k*z+a);

Ey=Eoy*cos(w*t-k*z+b);

subplot(4,4,i);

i=i+1;

plot3(Ex,Ey,z);

zlabel('

z'

);

xlabel('

x'

ylabel('

y'

title(['

φ=pi/4'

'

*{'

num2str(i-2),'

}'

])

end

n=9;

linspace(0,T,1000);

7*pi/4

Ex=Eox*cos(w*t+k*z);

Ey=Eoy*cos(w*t+k*z+b);

subplot(4,4,n);

n=n+1;

plot(Ex,Ey);

axissquare;

num2str(n-10),'

2、双光束干涉仿真

clear

lamd=5e-7;

%设定入射波长

d=0.002;

%缝间距

z=1;

%屏缝间距

yzd=5*lamd*z/d;

%设定屏幕范围

x=yzd;

y=linspace(-yzd,yzd,500);

fori=1:

500

l1=sqrt((y(i)-d/2)^2+z^2);

l2=sqrt((y(i)+d/2)^2+z^2);

phi=2*pi*(l2-l1)/lamd;

u(i,:

)=4*cos(phi/2)^2;

%干涉光强

colormap(gray)

subplot(1,4,1);

imagesc(x,y,u);

%画单色光干涉条纹

title('

单色光波干涉条纹'

subplot(1,4,2);

plot(u(:

),y)

单色光波曲线'

l1=sqrt((y(i)-d/2).^2+z^2);

l2=sqrt((y(i)+d/2).^2+z^2);

Nl=11;

dl=linspace(-0.1,0.1,Nl);

%复色光谱线宽度

lamd1=lamd*(1+dl);

phi1=2*pi*(l2-l1)./lamd1;

)=sum(4*cos(phi1/2).^2);

%复色光干涉强度

subplot(1,4,3);

imagesc(x,y,u);

%复色光干涉条纹

复色光波干涉条纹'

subplot(1,4,4);

复色光波曲线'

3.平行平板多光束干涉

clear;

c=3.0*1e+8;

n1=1;

h=0.005;

St=[0,pi/6];

R=[0.0460.270.640.870.99];

Fai=0:

0.005*pi:

4*pi;

Eoi=1;

Ii=Eoi^2;

n=length(R);

n

F=4.*R(i)./(1-R(i)).^2;

It1=1./(1+F.*sin(Fai./2).^2)*Ii;

%Ir1=(F.*sin(Fai./2).^2)/(1+F.*sin(Fai./2).^2)*Ii;

Ir1=Ii-It1;

It=It1./Ii;

Ir=Ir1./Ii;

subplot(1,3,1);

ifi==1

plot(Fai,It,'

r'

holdon

end

ifi==2

g'

ifi==3

b'

end

ifi==4

c'

ifi==5

m'

holdon

gridon

Fai/pi'

Tt/Ii'

title('

透射'

legend('

R=0.046'

R=0.27'

R=0.64'

R=0.87'

R=0.99'

subplot(1,3,2);

plot(Fai,Ir,'

Ir/Ii'

反射'

boxon

m=length(St);

forj=1:

m

V=(c.*Fai)./(4*pi*n1*h.*cos(St(j)));

subplot(1,3,3);

plot(V,It,'

V'

滤波'

end

4.光的矩形孔衍射仿真

lmda=632.8e-9;

%入射波长大小

z1=4;

A=1000;

a=1e-3;

b=2e-3;

k=2*pi/lmda;

n=100;

x=linspace(-a*5,a*5,n);

y=linspace(-b*5,b*5,n);

dx1=a/n;

dy1=b/n;

n%x

n%y

p=0;

forx1=linspace(-a/2,a/2,n)%x1

q=0;

fory1=linspace(-b/2,b/2,n)%y1

r=sqrt(z1^2+(x(i)-x1)^2+(y(j)-y1)^2);

f=(-sqrt(-1)/lmda)*A*exp(sqrt(-1)*k*r)*(1+z1/r)*(dx1*dy1)/(r*2);

q=q+f;

p=p+q;

E(i,j)=p;

I=(abs(E))^2;

subplot(1,2,1)

imagesc(I)

subplot(1,2,2)

mesh(x,y,I)

西安邮电大学光电子技术系专业课程设计过程考核成绩表

张娟娟

班级/学号

光电1103/05114093

承担任务实验室(单位)

所在部门

电子工程学院

实施时间

2014年6月16日—2014年6月27日

指导教师姓名

职务或职称

指导教师评价

学习态度(10分)

□认真□一般□不认真

学习纪律(10分)

□全勤□偶尔缺勤□经常缺勤

报告质量(30分)

□高□中□低

方案设计(25分)

□好□中□差

结果验收(25分)

总分(百分制)

总体评价

该生专业课程设计总体评定为:

□优秀□良好□中等□及格□不及格

指导教师:

年月日

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2