电容触摸屏控制设计外文文献及中文翻译.docx

上传人:b****4 文档编号:4820550 上传时间:2023-05-07 格式:DOCX 页数:18 大小:199.15KB
下载 相关 举报
电容触摸屏控制设计外文文献及中文翻译.docx_第1页
第1页 / 共18页
电容触摸屏控制设计外文文献及中文翻译.docx_第2页
第2页 / 共18页
电容触摸屏控制设计外文文献及中文翻译.docx_第3页
第3页 / 共18页
电容触摸屏控制设计外文文献及中文翻译.docx_第4页
第4页 / 共18页
电容触摸屏控制设计外文文献及中文翻译.docx_第5页
第5页 / 共18页
电容触摸屏控制设计外文文献及中文翻译.docx_第6页
第6页 / 共18页
电容触摸屏控制设计外文文献及中文翻译.docx_第7页
第7页 / 共18页
电容触摸屏控制设计外文文献及中文翻译.docx_第8页
第8页 / 共18页
电容触摸屏控制设计外文文献及中文翻译.docx_第9页
第9页 / 共18页
电容触摸屏控制设计外文文献及中文翻译.docx_第10页
第10页 / 共18页
电容触摸屏控制设计外文文献及中文翻译.docx_第11页
第11页 / 共18页
电容触摸屏控制设计外文文献及中文翻译.docx_第12页
第12页 / 共18页
电容触摸屏控制设计外文文献及中文翻译.docx_第13页
第13页 / 共18页
电容触摸屏控制设计外文文献及中文翻译.docx_第14页
第14页 / 共18页
电容触摸屏控制设计外文文献及中文翻译.docx_第15页
第15页 / 共18页
电容触摸屏控制设计外文文献及中文翻译.docx_第16页
第16页 / 共18页
电容触摸屏控制设计外文文献及中文翻译.docx_第17页
第17页 / 共18页
电容触摸屏控制设计外文文献及中文翻译.docx_第18页
第18页 / 共18页
亲,该文档总共18页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

电容触摸屏控制设计外文文献及中文翻译.docx

《电容触摸屏控制设计外文文献及中文翻译.docx》由会员分享,可在线阅读,更多相关《电容触摸屏控制设计外文文献及中文翻译.docx(18页珍藏版)》请在冰点文库上搜索。

电容触摸屏控制设计外文文献及中文翻译.docx

电容触摸屏控制设计外文文献及中文翻译

ALow-Cost,SmartCapacitivePositionSensor

Abstract

Anewhigh-performance,low-cost,capacitiveposition-measuringsystemisdescribed.Byusingahighlylinearoscillator,shieldingandathree-signalapproach,mostoftheerrorsareeliminated.Theaccuracyamountsto1μmovera1mmrange.Sincetheoutputoftheoscillatorcandirectlybeconnectedtoamicrocontroller,anA/Dconverterisnotneeded.

I.INTRODUCTION

Thispaperdescribesanovelhigh-performance,low-cost,capacitivedisplacementmeasuringsystemfeaturing:

1mmmeasuringrange,

1μmaccuracy,

0.1stotalmeasuringtime.

Translatedtothecapacitivedomain,thespecificationscorrespondto:

apossiblerangeof1pF;

only50fFofthisrangeisusedforthedisplacementtransducer;

50aFabsolutecapacitance-measuringinaccuracy.

MeijerandSchrier[l]andmorerecentlyVanDrecht,Meijer,andDeJong[2]haveproposedadisplacement-measuringsystem,usingaPSD(PositionSensitiveDetector)assensingelement.SomedisadvantagesofusingaPSDarethehighercostsandthehigherpowerconsumptionofthePSDandLED(Light-EmittingDiode)ascomparedtothecapacitivesensorelementsdescribedinthispaper.

Thesignalprocessorusestheconceptspresentedin[2],butisadoptedfortheuseofcapacitiveelements.Bytheextensiveuseofshielding,guardingandsmartA/Dconversion,thesystemisabletocombineahighaccuracywithaverylowcost-price.Thetransducerproducesthree-period-modulatedsignalswhichcanbeselectedanddirectlyreadoutbyamicrocontroller.Themicrocontroller,inreturn,calculatesthedisplacementandcansendthisvaluetoahostcomputer(Fig.1)oradisplayordriveanactuator.

Fig.1.Blockdiagramofthesystem

Fig.2.Perspectiveanddimensionsoftheelectrodestructure

Ⅱ.THEELECTRODESTRUCTURE

ThebasicsensingelementconsistsoftwosimpleelectrodeswithcapacitanceCx,(Fig.2).Thesmallerone(E2)issurroundedbyaguardelectrode.Thankstotheuseoftheguardelectrode,thecapacitanceCxbetweenthetwoelectrodesisindependentofmovements(lateraldisplacementsaswellasrotations)paralleltotheelectrodesurface.TheinfluenceoftheparasiticcapacitancesCpwillbeeliminatedaswillbediscussedinSectionⅢ.

AccordingtoHeerens[3],therelativedeviationinthecapacitanceCxbetweenthetwoelectrodescausedbythefiniteguardelectrodesizeissmallerthan:

δ

(1)

wherexisthewidthoftheguardanddthedistancebetweentheelectrodes.Thisdeviationintroducesanonlinearity.Thereforewerequirethatδislessthan100ppm.Alsothegapbetweenthesmallelectrodeandthesurroundingguardcausesadeviation:

δ

(2)

withsthewidthofthegap.Thisdeviationisnegligiblecomparedto(l),whenthegapwidthislessthan1/3ofthedistancebetweentheelectrodes.

Anothercauseoferrorsoriginatesfromapossiblefiniteskewangleαbetweenthetwoelectrodes(Fig.3).Assumingthefollowingconditions:

thepotentialsonthesmallelectrodeandtheguardelectrodeareequalto0V,

thepotentialonthelargeelectrodeisequaltoVvolt,

theguardelectrodeislargeenough,

itcanbeseenthattheelectricfieldwillbeconcentric.

Fig.3.Electrodeswithangleα.

Tokeepthecalculationssimple,wewillassumetheelectrodestobeinfinitelylargeinonedirection.Nowtheproblemisatwo-dimensionalonethatcanbesolvedbyusingpolar-coordinates(r,φ).Inthiscasetheelectricalfieldcanbedescribedby:

(3)

Tocalculatethechargeonthesmallelectrode,wesetφto0andintegrateoverr:

(4)

withBltheleftborderofthesmallelectrode:

(5)

andBrtherightborder:

(6)

Solving(4)resultsin:

(7)

Forsmallα'sthiscanbeapproximatedby:

(8)

Itappearstobedesirabletochooselsmallerthand,sotheerrorwilldependonlyontheangleα.Inourcase,achangeintheangleof0.6°willcauseanerrorlessthan100ppm.

Withaproperdesigntheparametersεoandlareconstant,andthenthecapacitancebetweenthetwoelectrodeswilldependonlyonthedistancedbetweentheelectrodes.

Ⅲ.ELIMINATIONOFPARASITICCAPACITANCES

BesidesthedesiredsensorcapacitanceC,therearealsomanyparasiticcapacitancesintheactualstructure(Fig.2).ThesecapacitancescanbemodeledasshowninFig.4.HereCplrepresentstheparasiticcapacitancesfromtheelectrodeE1andCp2fromtheelectrodeE2totheguardelectrodesandtheshielding.ParasiticcapacitanceCp3resultsfromimperfectshieldingandformsanoffsetcapacitance.WhenthetransducercapacitanceCxisconnectedtoanACvoltagesourceandthecurrentthroughtheelectrodeismeasured,CplandCp2willbeeliminated.Cp3canbeeliminatedbyperforminganoffsetmeasurement.

Fig.4.Eliminationofparasiticcapacitances

Thecurrentismeasuredbytheamplifierwithshuntfeedback,whichhasaverylowinputimpedance.Toobtaintherequiredlinearity,theunity-gainbandwidthfToftheamplifierhastosatisfythefollowingcondition:

(9)

whereTistheperiodoftheinputsignal.

SinceCp2consistsofcablecapacitancesandtheinputcapacitanceoftheopamp,itmayindeedbelargerthanCfandcannotbeneglected.

IV.THECONCEPTOFTHESYSTEM

Thesystemusesthethree-signalconceptpresentedin[2],whichisbasedonthefollowingprinciples.WhenwemeasureacapacitorCxwithalinearsystem,weobtainavalue:

(10)

wheremistheunknowngainandMoff,theunknownoffset.ByperformingthemeasurementofareferencequantityCref,inanidenticalwayandbymeasuringtheoffset,Moff,bymakingm=0,theparametersmandMoffareeliminated.ThefinalmeasurementresultPisdefinedas:

(11)

Inourcase,forthesensorcapacitanceC,itholdsthat:

(12)

whereAxistheareaoftheelectrode,doistheinitialdistancebetweenthem,εisthedielectricconstantand△disthedisplacementtobemeasured.Forthereferenceelectrodesitholdsthat:

(13)

withAreftheareaanddrefthedistance.Substitutionof(12)and(13)into(10)andtheninto(11)yields:

(14)

Here,Pisavaluerepresentingthepositionwhilea1anda0areunknown,butstableconstants.Theconstanta1=Aref/Axisastableconstantprovidedthereisagoodmechanicalmatchingbetweentheelectrodeareas.Theconstantao=(Arefd0/(Axdref)willalsobeastableconstantprovidedthatdoanddrefareconstant.Theseconstantscanbedeterminedbyaone-timecalibration.Inmanyapplicationsthiscalibrationcanbeomitted;whenthedisplacementsensorispartofalargersystem,anoverallcalibrationisrequiredanyway.Thisoverallcalibrationeliminatestherequirementforaseparatedeterminationofa1anda0.

V.THECAPACITANCE-TO-PERIODCONVERSION

Thesignalswhichareproportionaltothecapacitorvaluesareconvertedintoaperiod,usingamodifiedMartinoscillator[4](Fig.5j.

WhenthevoltageswingacrossthecapacitorisequaltothatacrosstheresistorandtheNANDgatesareswitchedoff,thisoscillatorhasaperiodToff:

Toff=4RCoff.(15)

Sincethevalueoftheresistoriskeptconstant,theperiodvariesonlywiththecapacitorvalue.Now,byswitchingontherightNANDport,thecapacitanceCXcanbeconnectedinparalleltoCoff.Thentheperiodbecomes:

Tx=4R(Coff+Cx)=4RCx+Toff(16)

TheconstantsRandToffareeliminatedinthewaydescribedinSectionIV.

In[2]itisshownthatthesystemisimmuneformostofthenonidealitiesoftheopampandthecomparator,likeslewing,limitationsofbandwidthandgain,offsetvoltages,andinputbiascurrents.Thesenonidealitiesonlycauseadditiveormultiplicativeerrorswhichareeliminatedbythethree-signalapproach.

VI.PERIODMEASUREMENTWITHAMICROCONTROLLER

Performingperiodmeasurementwithamicrocontrollerisaneasytask.Inourcase,anINTEL87C51FAisused,whichhas8kByteROM,256ByteRAM,andUARTforserialcommunication,andthecapabilitytomeasureperiodswitha333nsresolution.Eventhoughthecountersare16bwide,theycaneasilybeextendedinthesoftwareto24bormore.

Theperiodmeasurementtakesplacemostlyinthehardwareofthemicrocontroller.Therefore,itispossibletolettheCPUofthemicrocontrollerperformothertasksatthesametime(Fig.6).Forinstance,simultaneouslywiththemeasurementofperiodTx,periodTrefandperiodToff,therelativecapacitancewithrespecttoCrefiscalculatedaccordingto(11),andtheresultistransferredthroughtheUARTtoapersonalcomputer.

Fig.5.ModifiedMartinoscillatorwithmicrocontrollerandelectrodes.

Fig.6.Periodmeasurementasbackgroundprocess.

Fig.7.Positionerrorasfunctionofthepositionandestimateofthenonlinearity.

VII.EXPERIMENTALRESULTS

Thesensorisnotsensitivetofabricationtolerancesoftheelectrodes.Thereforeinourexperimentalsetupweusedsimpleprintedcircuitboardtechnologytofabricatetheelectrodes,whichhaveaneffectiveareaof12mm×12mm.Theguardelectrodehasawidthof15mm,whilethedistancebetweentheelectrodesisabout5mm.Whenthedistancebetweentheelectrodesisvariedovera1mmrange,thecapacitancechangesfrom0.25pFto0.3pF.Thankstothechosenconcept,evenasimpledualopamp(TLC272AC)andCMOSNAND’scouldbeused,allowingasingle5Vsupplyvoltage.Thetotalmeasurementtimeamountstoonly100ms,wheretheoscillatorwasrunningatabout10kHz.

Thesystemwastestedinafullyautomatedsetup,usinganelectricalXYtable,thedescribedsensorandapersonalcomputer.Toachievetherequiredmeasurementaccuracythesetupwasautozeroedeveryminute.Inthiswaythenonlinearity,long-termstabilityandrepeatabilityhavebeenfoundtobetterthan1μmoverarangeof1mm(Fig.7)

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > PPT模板 > 自然景观

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2