高中数学复习讲义 第二章 函数B.docx

上传人:b****3 文档编号:4936563 上传时间:2023-05-07 格式:DOCX 页数:37 大小:372.08KB
下载 相关 举报
高中数学复习讲义 第二章 函数B.docx_第1页
第1页 / 共37页
高中数学复习讲义 第二章 函数B.docx_第2页
第2页 / 共37页
高中数学复习讲义 第二章 函数B.docx_第3页
第3页 / 共37页
高中数学复习讲义 第二章 函数B.docx_第4页
第4页 / 共37页
高中数学复习讲义 第二章 函数B.docx_第5页
第5页 / 共37页
高中数学复习讲义 第二章 函数B.docx_第6页
第6页 / 共37页
高中数学复习讲义 第二章 函数B.docx_第7页
第7页 / 共37页
高中数学复习讲义 第二章 函数B.docx_第8页
第8页 / 共37页
高中数学复习讲义 第二章 函数B.docx_第9页
第9页 / 共37页
高中数学复习讲义 第二章 函数B.docx_第10页
第10页 / 共37页
高中数学复习讲义 第二章 函数B.docx_第11页
第11页 / 共37页
高中数学复习讲义 第二章 函数B.docx_第12页
第12页 / 共37页
高中数学复习讲义 第二章 函数B.docx_第13页
第13页 / 共37页
高中数学复习讲义 第二章 函数B.docx_第14页
第14页 / 共37页
高中数学复习讲义 第二章 函数B.docx_第15页
第15页 / 共37页
高中数学复习讲义 第二章 函数B.docx_第16页
第16页 / 共37页
高中数学复习讲义 第二章 函数B.docx_第17页
第17页 / 共37页
高中数学复习讲义 第二章 函数B.docx_第18页
第18页 / 共37页
高中数学复习讲义 第二章 函数B.docx_第19页
第19页 / 共37页
高中数学复习讲义 第二章 函数B.docx_第20页
第20页 / 共37页
亲,该文档总共37页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

高中数学复习讲义 第二章 函数B.docx

《高中数学复习讲义 第二章 函数B.docx》由会员分享,可在线阅读,更多相关《高中数学复习讲义 第二章 函数B.docx(37页珍藏版)》请在冰点文库上搜索。

高中数学复习讲义 第二章 函数B.docx

高中数学复习讲义第二章函数B

2019-2020年高中数学复习讲义第二章函数B

【考点导读】

1.理解二次函数的概念,掌握二次函数的图像和性质;

2.能结合二次函数的图像判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系.

【基础练习】

1.已知二次函数,则其图像的开口向__上__;对称轴方程为;顶点坐标为,与轴的交点坐标为,最小值为.

2.二次函数的图像的对称轴为,则__-2___,顶点坐标为,递增区间为,递减区间为.

3.函数的零点为.

4.

实系数方程两实根异号的充要条件为;有两正根的充要条件为;有两负根的充要条件为.

5.已知函数在区间上有最大值3,最小值2,则m的取值范围是__________.

【范例解析】

例1.设为实数,函数,.

(1)讨论的奇偶性;

(2)若时,求的最小值.

分析:

去绝对值.

解:

(1)当时,函数

此时,为偶函数.

当时,,,

,.

此时既不是奇函数,也不是偶函数.

(2)

由于在上的最小值为,在内的最小值为.

故函数在内的最小值为.

点评:

注意分类讨论;分段函数求最值,先求每个区间上的函数最值,再确定最值中的最值.

例2.函数在区间的最大值记为,求的表达式.

分析:

二次函数在给定区间上求最值,重点研究其在所给区间上的单调性情况.

解:

∵直线是抛物线的对称轴,∴可分以下几种情况进行讨论:

(1)当时,函数,的图象是开口向上的抛物线的一段,

由知在上单调递增,故;

(2)当时,,,有=2;

(3)当时,,函数,的图象是开口向下的抛物线的一段,

若即时,,

若即时,,

若即时,.

综上所述,有=

点评:

解答本题应注意两点:

一是对时不能遗漏;二是对时的分类讨论中应同时考察抛物线的开口方向,对称轴的位置及在区间上的单调性.

【反馈演练】

1.函数

是单调函数的充要条件是.

2.已知二次函数的图像顶点为,且图像在轴上截得的线段长为8,则此二次函数的解析式为.

3.设,二次函数的图象为下列四图之一:

 

 

则a的值为(B)

A.1B.-1C.D.

4.若不等式对于一切成立,则a的取值范围是.

5.若关于x的方程在有解,则实数m的取值范围是.

6.已知函数在有最小值,记作.

(1)求的表达式;

(2)求的最大值.

解:

(1)由知对称轴方程为,

当时,即时,;

当,即时,;

当,即时,;

综上,

(2)当时,;当时,;当时,.故当时,的最大值为3.

7.分别根据下列条件,求实数a的值:

(1)函数在在上有最大值2;

(2)函数在在上有最大值4.

 

解:

(1)当时,,令,则;

当时,,令,(舍);

当时,,即.

综上,可得或.

(2)当时,,即,则;

当时,,即,则.

综上,或.

8.已知函数.

(1)对任意,比较与的大小;

(2)若时,有,求实数a的取值范围.

解:

(1)对任意,,

(2)又,得,即,

,解得.

 

第7课指数式与对数式

【考点导读】

1.理解分数指数幂的概念,掌握分数指数幂的运算性质;

2.理解对数的概念,掌握对数的运算性质;

3.能运用指数,对数的运算性质进行化简,求值,证明,并注意公式成立的前提条件;

4.通过指数式与对数式的互化以及不同底的对数运算化为同底对数运算.

【基础练习】

1.写出下列各式的值:

;____4____;;

___0_____;____1____;__-4__.

2.化简下列各式:

(1);

(2)

3.求值:

(1)___-38____;

(2)

____1____;

(3)

_____3____.

【范例解析】

例1.化简求值:

(1)若,求及的值;

(2)若,求的值.

分析:

先化简再求值.

解:

(1)由,得,故;

又,;,故.

(2)由得;则

点评:

解条件求值问题:

(1)将已知条件适当变形后使用;

(2)先化简再代入求值.

例2.

(1)求值:

(2)已知,,求.

分析:

化为同底.

解:

(1)原式=

(2)由,得;所以

点评:

在对数的求值过程中,应注意将对数化为同底的对数.

例3.已知,且,求c的值.

分析:

将a,b都用c表示.

解:

由,得,;又,则,

得.,.

点评:

三个方程三个未知数,消元法求解.

【反馈演练】

1.若,则.

2.设,则.

3.已知函数,若,则-b.

4.设函数

若,则x0的取值范围是(-∞,-1)∪(1,+∞).

5.设已知f(x6)=log2x,那么f(8)等于.

6.若,,则k=__-1__.

7.已知函数

,且.

(1)求实数c的值;

(2)解不等式.

解:

(1)因为,所以,

由,即,.

(2)由

(1)得:

由得,当时,解得.

当时,解得,

所以的解集为.

 

第8课幂函数、指数函数及其性质

【考点导读】

1.了解幂函数的概念,结合函数,,,,的图像了解它们的变化情况;

2.理解指数函数的概念和意义,能画出具体指数函数的图像,探索并理解指数函数的单调性;

3.在解决实际问题的过程中,体会指数函数是一类重要的函数模型.

【基础练习】

1.指数函数是R上的单调减函数,则实数a的取值范围是.

2.把函数的图像分别沿x轴方向向左,沿y轴方向向下平移2个单位,得到的图像,则.

3.函数的定义域为___R__;单调递增区间;值域.

4.已知函数是奇函数,则实数a的取值.

5.要使的图像不经过第一象限,则实数m的取值范围.

6.已知函数过定点,则此定点坐标为.

【范例解析】

例1.比较各组值的大小:

(1),,,;

(2),,,其中;

(3),.

分析:

同指不同底利用幂函数的单调性,同底不同指利用指数函数的单调性.

解:

(1),而,

(2)且,.

(3).

点评:

比较同指不同底可利用幂函数的单调性,同底不同指可利用指数函数的单调性;另注意通过0,1等数进行间接分类.

例2.已知定义域为的函数是奇函数,求的值;

解:

因为是奇函数,所以=0,即

又由f

(1)=-f(-1)知

例3.已知函数,求证:

(1)函数在上是增函数;

(2)方程没有负根.

分析:

注意反证法的运用.

证明:

(1)设,

,,又,所以,,,则

故函数在上是增函数.

(2)设存在,满足,则.又,

即,与假设矛盾,故方程没有负根.

点评:

本题主要考察指数函数的单调性,函数和方程的内在联系.

【反馈演练】

1.函数对于任意的实数都有(C)

A.B.

C.D.

2.设,则(A)

A.-2

3.将y=2x的图像(D)再作关于直线y=x对称的图像,可得到函数的图像.

A.先向左平行移动1个单位B.先向右平行移动1个单位

C.先向上平行移动1个单位D.先向下平行移动1个单位

4.函数的图象如图,其中a、b为常数,则下列结论正确的是(C)

A.B.

C.D.

5.函数在上的最大值与最小值的和为3,则的值为___2__.

6.若关于x的方程有实数根,求实数m的取值范围.

解:

由得,

7.已知函数

(1)判断的奇偶性;

(2)若在R上是单调递增函数,求实数a的取值范围.

解:

(1)定义域为R,则

,故是奇函数.

(2)设,

当时,得,即;

当时,得,即;

综上,实数a的取值范围是.

 

第9课对数函数及其性质

【考点导读】

1.理解对数函数的概念和意义,能画出具体对数函数的图像,探索并理解对数函数的单调性;

2.在解决实际问题的过程中,体会对数函数是一类重要的函数模型;

3.熟练运用分类讨论思想解决指数函数,对数函数的单调性问题.

【基础练习】

1.函数的单调递增区间是.

2.函数的单调减区间是.

【范例解析】

例1.

(1)已知在是减函数,则实数的取值范围是_________.

(2)设函数,给出下列命题:

①有最小值;②当时,的值域为;

③当时,的定义域为;

④若在区间上单调递增,则实数的取值范围是.

则其中正确命题的序号是_____________.

分析:

注意定义域,真数大于零.

解:

(1),在上递减,要使在是减函数,则;又在上要大于零,即,即;综上,.

(2)①有无最小值与a的取值有关;②当时,,成立;

③当时,若的定义域为,则恒成立,即,即成立;④若在区间上单调递增,则

解得,不成立.

点评:

解决对数函数有关问题首先要考虑定义域,并能结合对数函数图像分析解决.

例3.已知函数,求函数的定义域,并讨论它的奇偶性和单调性.

分析:

利用定义证明复合函数的单调性.

解:

x须满足

所以函数的定义域为(-1,0)∪(0,1).

因为函数的定义域关于原点对称,且对定义域内的任意x,有

,所以是奇函数.

研究在(0,1)内的单调性,任取x1、x2∈(0,1),且设x1

得>0,即在(0,1)内单调递减,

由于是奇函数,所以在(-1,0)内单调递减.

点评:

本题重点考察复合函数单调性的判断及证明,运用函数性质解决问题的能力.

【反馈演练】

1.给出下列四个数:

①;②;③;④.其中值最大的序号是___④___.

2.设函数

的图像过点,,则等于___5__.

3.函数

的图象恒过定点,则定点的坐标是.

4.函数

上的最大值和最小值之和为a,则a的值为.

5.函数的图象和函数的图象的交点个数有___3___个.

6.下列四个函数:

①;②;③;

④.其中,函数图像只能是如图所示的序号为___②___.

7.求函数,的最大值和最小值.

解:

令,,则,

即求函数在上的最大值和最小值.

故函数的最大值为0,最小值为.

8.已知函数.

(1)求的定义域;

(2)判断的奇偶性;(3)讨论的单调性,并证明.

解:

(1)解:

由,故的定义域为.

(2)

,故为奇函数.

(3)证明:

设,则

当时,,故在上为减函数;同理在上也为减函数;

当时,,故在,上为增函数.

 

第10课函数与方程

【考点导读】

1.能利用二次函数的图像与判别式的正负,判断一元二次方程根的存在性及根的个数,了解函数零点与方程根的联系.

2.能借助计算器用二分法求方程的近似解,并理解二分法的实质.

3.体验并理解函数与方程的相互转化的数学思想方法.

【基础练习】

1.函数在区间有_____1___个零点.

2.已知函数的图像是连续的,且与有如下的对应值表:

1

2

3

4

5

6

-2.3

3.4

0

-1.3

-3.4

3.4

则在区间上的零点至少有___3__个.

【范例解析】

例1.是定义在区间[-c,c]上的奇函数,其图象如图所示:

令,

则下列关于函数的结论:

①若a<0,则函数的图象关于原点对称;

②若a=-1,-2

③若a≠0,,则方程=0有两个实根;

④若,,则方程=0有三个实根.

其中,正确的结论有___________.

分析:

利用图像将函数与方程进行互化.

解:

当且时,是非奇非偶函数,①不正确;当,时,是奇函数,关于原点对称,③不正确;当,时,,由图知,当时,才有三个实数根,故④不正确;故选②.

点评:

本题重点考察函数与方程思想,突出考察分析和观察能力;题中只给了图像特征,因此,应用其图,察其形,舍其次,抓其本.

例2.设,若,,.

求证:

(1)且;

(2)方程在内有两个实根.

分析:

利用,,进行消元代换.

证明:

(1),,由,得,代入得:

,即,且,即,即证.

(2),又,.则两根分别在区间,内,得证.

点评:

在证明第

(2)问时,应充分运用二分法求方程解的方法,选取的中点来考察的正负是首选目标,如不能实现,则应在区间内选取其它的值.本题也可选,也可利用根的分布来做.

【反馈演练】

1.设,为常数.若存在,使得,则实数a的取值范围是.

2.设函数

若,,则关于x的方程解的个数为(C)

A.1B.2C.3D.4

3.已知

,且方程无实数根,下列命题:

①方程也一定没有实数根;②若,则不等式对一切实数都成立;

③若,则必存在实数,使

④若,则不等式对一切实数都成立.

其中正确命题的序号是①②④.

4.设二次函数,方程的两根和满足.求实数的取值范围.

解:

则由题意可得

故所求实数的取值范围是.

5.已知函数

是偶函数,求k的值;

解:

是偶函数,

由于此式对于一切恒成立,

6.已知二次函数.若a>b>c, 且f

(1)=0,证明f(x)的图象与x轴有2个交点.

证明:

的图象与x轴有两个交点.

 

第11课函数模型及其应用

【考点导读】

1.能根据实际问题的情境建立函数模型,结合对函数性质的研究,给出问题的解答.

2.理解数据拟合是用来对事物的发展规律进行估计的一种方法,会根据条件借助计算工具解决一些简单的实际问题.

3.培养学生数学地分析问题,探索问题,解决问题的能力.

【基础练习】

1今有一组实验数据如下:

1.99

3.0

4.0

5.1

6.12

1.5

4.04

7.5

12

18.01

现准备用下列函数中的一个近似地表示这些数据满足的规律,

①②③④

其中最接近的一个的序号是______③_______.

2.某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x(0

(Ⅰ)写出本年度预计的年利润y与投入成本增加的比例x的关系式;

(Ⅱ)为使本年度的年利润比上年有所增加,问投入成本增加的比例x应在什么范围内?

解:

(Ⅰ)由题意得y=[1.2×(1+0.75x)-1×(1+x)]×1000×(1+0.6x)(0

整理得y=-60x2+20x+200(0

(Ⅱ)要保证本年度的利润比上年度有所增加,当且仅当

即解不等式得.

答:

为保证本年度的年利润比上年度有所增加,投入成本增加的比例x应满足0

【范例解析】

例.某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.

(Ⅰ)写出图一表示的市场售价与时间的函数关系式p=f(t);写出图二表示的种植成本与时间的函数关系式Q=g(t);

(Ⅱ)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?

(注:

市场售价和种植成本的单位:

元/102kg,时间单位:

天)

解:

(Ⅰ)由图一可得市场售价与时间的函数关系为

由图二可得种植成本与时间的函数关系为

g(t)=(t-150)2+100,0≤t≤300.

(Ⅱ)设t时刻的纯收益为h(t),则由题意得

h(t)=f(t)-g(t),

当0≤t≤200时,配方整理得

h(t)=-(t-50)2+100,

所以,当t=50时,h(t)取得区间[0,200]上的最大值100;

当200

h(t)=-(t-350)2+100,

所以,当t=300时,h(t)取得区间(200,300]上的最大值87.5.

综上:

由100>87.5可知,h(t)在区间[0,300]上可以取得最大值100,此时t=50,即从二月一日开始的第50天时,上市的西红柿纯收益最大

【反馈演练】

1.把长为12cm的细铁丝截成两段,各自围成一个正三角形,则这两个正三角形面积之和的最小值是___________.

2.某地高山上温度从山脚起每升高100m降低0.7℃,已知山顶的温度是14.1℃,山脚的温度是26℃,则此山的高度为_____17_____m.

3.某公司在甲、乙两地销售一种品牌车,利润(单位:

万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:

辆).若该公司在这两地共销售15辆车,则能获得的最大利润为____45.6___万元.

4.某单位用木料制作如图所示的框架,框架的下部是边长分别为x,y(单位:

m)的矩形.上部是等腰直角三角形.要求框架围成的总面积8cm2.问x、y分别为多少时用料最省?

解:

由题意得xy+x2=8,∴y=

=(0

则框架用料长度为l=2x+2y+2()=(+)x+≥4.

当(+)x=,即x=8-4时等号成立.

此时,x=8-4,,

故当x为8-4m,y为m时,用料最省.

 

2019-2020年高中数学复习讲义第八章直线和圆的方程

【知识图解】

 

 

 

【方法点拨】

1.掌握直线的倾斜角,斜率以及直线方程的各种形式,能正确地判断两直线位置关系,并能熟练地利用距离公式解决有关问题.注意直线方程各种形式应用的条件.了解二元一次不等式表示的平面区域,能解决一些简单的线性规划问题.

2.掌握关于点对称及关于直线对称的问题讨论方法,并能够熟练运用对称性来解决问题.

3.熟练运用待定系数法求圆的方程.

4.处理解析几何问题时,主要表现在两个方面:

(1)根据图形的性质,建立与之等价的代数结构;

(2)根据方程的代数特征洞察并揭示图形的性质.

5.要重视坐标法,学会如何借助于坐标系,用代数方法研究几何问题,体会这种方法所体现的数形结合思想.

6.要善于综合运用初中几何有关直线和圆的知识解决本章问题;还要注意综合运用三角函数、平面向量等与本章内容关系比较密切的知识.

第1课 直线的方程

【考点导读】

理解直线倾斜角、斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的几种形式,能根据条件,求出直线的方程.

高考中主要考查直线的斜率、截距、直线相对坐标系位置确定和求在不同条件下的直线方程,属中、低档题,多以填空题和选择题出现,每年必考.

【基础练习】

1.直线xcosα+y+2=0的倾斜角范围是

2.过点,且在两坐标轴上的截距互为相反数的直线方程是

3.直线l经过点(3,-1),且与两坐标轴围成一个等腰直角三角形,则直线l的方程为

4.无论取任何实数,直线

必经过一定点P,则P的坐标为(2,2)

【范例导析】

例1.已知两点A(-1,2)、B(m,3)

(1)求直线AB的斜率k;

(2)求直线AB的方程;

(3)已知实数m,求直线AB的倾斜角α的取值范围.

分析:

运用两点连线的子斜率公式解决,要注意斜率不存在的情况.

解:

(1)当m=-1时,直线AB的斜率不存在.

当m≠-1时,,

(2)当m=-1时,AB:

x=-1,

当m≠1时,AB:

.

(3)①当m=-1时,;

②当m≠-1时,

故综合①、②得,直线AB的倾斜角

点拨:

本题容易忽视对分母等于0和斜率不存在情况的讨论.

例2.直线l过点P(2,1),且分别交x轴、y轴的正半轴于点A、B、O为坐标原点.

(1)当△AOB的面积最小时,求直线l的方程;

(2)当|PA|·|PB|取最小值时,求直线l的方程.

分析:

引进合适的变量,建立相应的目标函数,通过寻找函数最值的取得条件来求l的方程.

(1)设直线l的方程为y-1=k(x-2),则点A(2-,0),B(0,1-2k),且2->0,1-2k>0,即k<0.

△AOB的面积S=(1-2k)(2-)=[(-4k)++4]≥4,当-4k=,即k=时,△AOB的面积有最小值4,则所求直线方程是x+2y-4=0.

(2)解法一:

由题设,可令直线方程l为y-1=k(x-2).

分别令y=0和x=0,得A(2-,0),B(0,1-2k),

∴|PA|·|PB|=

当且仅当k2=1,即k=±1时,|PA|·|PB|取得最小值4.又k<0,∴k=-1,这是直线l的方程是x+y-3=0.

解法二:

如下图,设∠BAO=θ,由题意得θ∈(0,),且|PA|·|PB|=

当且仅当θ=时,|PA|·|PB|取得最小值4,此时直线l的斜率为-1,直线l的方程是x+y-3=0.

 

点评①求直线方程的基本方法包括利用条件直接求直线的基本量和利用待定系数法求直线的基本量.②在研究最值问题时,可以从几何图形开始,找到取最值时的情形,也可以从代数角度出发,构建目标函数,利用函数的单调性或基本不等式等知识来求最值.

例3.直线l被两条直线l1:

4x+y+3=0和l2:

3x-5y-5=0截得的线段中点为P(-1,2).求直线l的方程.

分析本题关键是如何使用好中点坐标,对问题进行适当转化.

解:

解法一设直线l交l1于A(a,b),则点(-2-a,4-b)必在l2,所以有

,解得

直线l过A(-2,5),P(-1,2),它的方程是3x+y+1=0.

解法二由已知可设直线l与l1的交点为A(-1+m,2+n),则直线l与l2的交点为B(-1-m,2-n),且l的斜率k=,∵A,B两点分别l1和l2上,∴

,消去常数项得-3m=n,所以k=-3,

从而直线l的方程为3x+y+1=0.

解法三设l1、l2与l的交点分别为A,B,则l1关于点P(-1,2)对称的直线m过点B,利用对称关系可求得m的方程为4x+y+1=0,因为直线l过点B,故直线l的方程可设为3x-5y-5+λ(4x+y+1)=0.由于直线l点P(-1,2),所以可求得λ=-18,从而l的方程为3x-5y-5-18(4x+y+1)=0,即3x+y+1=0.

点评本题主要复习有关线段中点的几种解法,本题也可以先设直线方程,然后求交点,再根据中点坐标求出直线l的斜率,但这种解法思路清晰,计算量大,解法一和解法二灵活运用中点坐标公式,使计算简化,对解法二还可以用来求已知中点坐标的圆锥曲线的弦所在直线方程,解法三是利用直线系方程求解,对学生的思维层次要求较高。

【反馈练习】

1.已知下列四个命题①经过定点P0(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示;②经过任意两个不同点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示;③不经过原点的直线都可以用方程+=1表示;④经过定点A(0,b)的直线都可以用方程y=kx+b表示,其中正确的是①③④

2.设直线l的方程为

当直线l的斜率为-1时,k值为__5__,当直线l在x轴、y轴上截距之和等于0时,k值为1或3

3.设直线ax+by+c=0的倾斜角为,且sin+cos=0,则a,b满足的关系式为

4.若直线l:

y=kx与直线2x+3y-6=0的交点位于第一象限,则直线l的倾斜角的取值范围是

5.若直线4x-3y-12=0被两坐标轴截得的线段长为,则c的值为

6.若

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 农林牧渔 > 畜牧兽医

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2