安平煤矿矿井通风阻力测定报告 2Word格式.docx

上传人:b****2 文档编号:616864 上传时间:2023-04-29 格式:DOCX 页数:19 大小:126.60KB
下载 相关 举报
安平煤矿矿井通风阻力测定报告 2Word格式.docx_第1页
第1页 / 共19页
安平煤矿矿井通风阻力测定报告 2Word格式.docx_第2页
第2页 / 共19页
安平煤矿矿井通风阻力测定报告 2Word格式.docx_第3页
第3页 / 共19页
安平煤矿矿井通风阻力测定报告 2Word格式.docx_第4页
第4页 / 共19页
安平煤矿矿井通风阻力测定报告 2Word格式.docx_第5页
第5页 / 共19页
安平煤矿矿井通风阻力测定报告 2Word格式.docx_第6页
第6页 / 共19页
安平煤矿矿井通风阻力测定报告 2Word格式.docx_第7页
第7页 / 共19页
安平煤矿矿井通风阻力测定报告 2Word格式.docx_第8页
第8页 / 共19页
安平煤矿矿井通风阻力测定报告 2Word格式.docx_第9页
第9页 / 共19页
安平煤矿矿井通风阻力测定报告 2Word格式.docx_第10页
第10页 / 共19页
安平煤矿矿井通风阻力测定报告 2Word格式.docx_第11页
第11页 / 共19页
安平煤矿矿井通风阻力测定报告 2Word格式.docx_第12页
第12页 / 共19页
安平煤矿矿井通风阻力测定报告 2Word格式.docx_第13页
第13页 / 共19页
安平煤矿矿井通风阻力测定报告 2Word格式.docx_第14页
第14页 / 共19页
安平煤矿矿井通风阻力测定报告 2Word格式.docx_第15页
第15页 / 共19页
安平煤矿矿井通风阻力测定报告 2Word格式.docx_第16页
第16页 / 共19页
安平煤矿矿井通风阻力测定报告 2Word格式.docx_第17页
第17页 / 共19页
安平煤矿矿井通风阻力测定报告 2Word格式.docx_第18页
第18页 / 共19页
安平煤矿矿井通风阻力测定报告 2Word格式.docx_第19页
第19页 / 共19页
亲,该文档总共19页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

安平煤矿矿井通风阻力测定报告 2Word格式.docx

《安平煤矿矿井通风阻力测定报告 2Word格式.docx》由会员分享,可在线阅读,更多相关《安平煤矿矿井通风阻力测定报告 2Word格式.docx(19页珍藏版)》请在冰点文库上搜索。

安平煤矿矿井通风阻力测定报告 2Word格式.docx

风量240m³

/min,风速0.57m/s。

2、矿井通风阻力实际测定、计算及分析

2.1、通风阻力测定的目的

矿井通风阻力测定是矿井通风技术管理的一项重要内容,其主要目的在于:

(1)了解矿井通风系统的阻力分布情况;

(2)为生产矿井通风系统优化和合理配风提供基础资料和参数;

(3)为矿井井下灾害防治和风流调节提供必要的基础资料;

(4)为保证矿井的正常生产和增产提效提供依据;

(5)为矿井通风能力核定提供基础参数。

2.2、通风阻力测定的技术依据及方法

2.2.1、测定的技术依据

《煤矿安全质量标准化标准及考核评级办法》2010年

《矿井通风阻力测定方法》MT/T440-1995MT/T440-1995

《煤矿安全规程》(2010版)第119条规定:

“新井投产前必须进行1次矿井通风阻力测定,以后每3年至少进行1次,矿井转入新水平生产或改变一翼通风系统后,必须重新进行矿井通风阻力测定。

2.2.2、测定方法

本次测定采用气压计基点测定法。

基点法是将一台气压计放在井上或井下某基点处,每隔一定时间测取气压读数并记录测定时间以监测地面大气压力的变化,进而对井下测定的气压数据进行校正;

另一台气压计沿事先选好的路线逐点测定气压值并记录测定时间。

采用基点法测定时两测点间的通风阻力计算公式为:

h1、2=(p1-P2)-(P0,1-P0,2)+(

)+

(Z1-Z2)g,

(1)

式中:

h1、2——分段阻力,Pa;

P1,P2——分段巷道起点和末点的绝对静压,Pa;

P0,1,P0,2——分段巷道起点和末点基点绝对静压,Pa;

ρ1,ρ2——分段巷道起点和末点的空气密度,Kg/m3;

V1,V2——分段巷道起点和末点的风速,m/s;

g——重力加速度,m/s2;

Z1,Z2——分段巷道起点和末点的标高,m。

空气物理参数

温度计、空压盒测量各测点空气的干、湿温度计绝对静压,根据以上3个参数可以查表得出湿空气相对湿度及水蒸气压力,然后按式

(2)计算出空气密度。

=0.003484

-0.00134

(2)

——空气密度,Kg/m3;

——干球温度,℃;

PP——水蒸气分压力,Pa;

B——大气压力,Pa。

2.2.3、测定时间:

二○一一年十月二十五日。

2.3、通风阻力测定的准备工作

矿井通风阻力测定是一项细致的技术工作,首先,组织参测人员的培训,其次,做好所用仪器仪表的检修校正和有关图表资料的准备,详细了解井下巷道的状况、通风设施和通风情况等。

2.3.1、图纸资料

为做好矿井通风资料测定工作,测前要收集矿井开拓开采工程平面图、通风系统图、采区布置图以及地质测量标高图,收集井下通风设备、设施的安装布置情况,生产作业轮班情况,矿井瓦斯涌出情况,以及通风报表、主要通风机运转、井下漏风、井巷规格尺寸、矿井自然通风等资料。

根据有关图纸和巷道布置绘出矿井风网图,风网图既要反映矿井的实际情况同时又允许进行适当的简化。

因此要详细了解井下巷道的实际分合情况、风量大小、通风设备和通风构筑物的位置以及其它生产设备的安装使用情况。

风网图既是通风阻力测定的蓝图,也是上机解算的依据,要认真做好节点的合并和取舍,节点编号应与原图一致,要求风网图中的节点既能在通风系统图中找到,也能在井下准确定位。

对较复杂的风网应考虑绘制风网图和选择阻力测定路线与测定点同步进行。

2.3.2、确定测点和选择测定路线

1)测点布置

选择测点的条件是由这些测点构成的风网应能反映矿井巷道系统的实际状况,测点应有准确的标高,两测点之间不易太近,否则难以准确测定两测点之间的阻力。

井下测点要做出明显的编号标记。

为了取得可靠的测定数据,在上述测定路线的风流分岔点之前或后及局部阻力大的地点前后均布置了测点,测点的位置选择在巷道支护完好、断面规整、前后无杂物、风流稳定的断面内。

2)测定路线

一般一个测组每班测20个测点为宜。

要合理选择测量路线,一是测定的行程要尽量短,二是要使标高差较大的测段两端测点的测定时间尽量接近,以免地面气压随时间变化产生较大的误差。

根据上述原则和本矿的具体情况,经过分析确定如下主要测定路线:

回风斜井——一水平回风绕道——1201回风石门——1201回风斜巷——1201回风巷——1201工作面——1201运输巷——1201运输石门——主斜井。

测定路线及测点位置见通风系统图所示。

2.3.3、记录表格

通风阻力测定的数据量大,井下巷道情况复杂,为完整、准确地记录各类测定数据和有关情况,应准备以下记录表格:

(1) 

基点气压变化记录表

(2) 

井下测定记录卡

(3) 

测点数据汇总表

(4)井巷规格表

2.3.4、仪表与用具

一个测组的仪表与用具测试仪器仪表名称、型号及生产厂家表1-1

仪表或用具名称

型号

数量

生产厂家

备注

空盒气压计

DYM3-1

2

长春气象仪器厂

/

高速表

CFJ25

辽宁鞍山市佳如矿用光学有限公司

中速表

DFA-4

微速表

DFA-3

温湿度晴雨表

TY93-1型

天津气象仪表厂

30米皮尺

机械秒表

上海星钻秒表有限公司

2.3.5、参测人员组织分工

为搞好阻力测定工作,测前应对参测人员进行培训,使参测人员了解通风阻力测定的目的、意义,测定方法与仪器的操作使用以及测定注意事项,充分发挥参测人员的主动性,同时要对参测人员提出明确要求、下达任务,以便有组织、有计划、有秩序地,高质、高效完成测定工作。

测定人员划分为4个小组,各组之间明确分工、密切合作。

基点组1~2人

每隔5分钟测一次气压,认真记录;

井下测压组2~3人

负责测定气压、温湿度、测点风速并量取测点顶、底顶垂高,气压计要指定专人读数与携带;

测风组3人

包括测风员1~2人,负责测点附近相关巷道的风速和断面测量并做临时记录;

(4) 

指挥组2人

包括组长1人负责指挥、调度全测组人员的活动;

向导1人负责领路与找测点;

专职记录1人负责记录全部测量数据、绘制测点附近相关巷道的布置,各巷道的风向,测风点的位置与编号以及其他需要记录和注明的内容。

2.4、通风阻力测定的具体要求

2.4.1、气压计的位置及读数

在通风阻力测定过程中,将气压计放在实际测点位置处,即巷道交叉点处。

2.4.2、断面和风量测量

在通风阻力测定中,对测点周围的所有巷道均应选择断面规整处测定巷道风速以求风量,同时要认真量取巷道断面。

按上述要求,风网中所有巷道都将进行三次测风,根据三次测风结果确定巷道平均风量。

测定巷道风速时每个断面至少测三次,误差不超过5%时取平均值。

阻力测定中风量的误差除因附近巷道风门开启等偶然因素影响外,断面测量不准是其主要原因。

对巷道断面和周界采用下面公式计算:

三心拱断面:

S=b(H-0.073b)m2;

周界:

P=4.1

(3);

半圆拱断面:

S=b(H-0.11b)m2;

P=3.84

(4);

S——巷道断面面积,m2;

H——巷道断面高度,m;

b——巷道断面宽度,m。

2.4.3、监测地面气压变化

地面大气压力变化会传到井下,影响测定结果。

一般按线性关系考虑地面气压变化引起井下测点变化值的传递。

为减少阻力测定过程中的干扰,通常选择非生产班和晴天气压较为稳定。

同时要掌握测点附近风门的开关,运输设备的移动,自然风压的变化等对测定结果的影响。

图1-2测通风阻力时矿井通风系统图

图1-3测通风阻力时矿井通风网络图

地面大气压监测数据表见表1-2

2.5、通风阻力测定原始数据

如图1-2所示为矿井通风系统平面图,根据测点确定的原则,在通风系统平面图上确定了14个测点。

通过以上充分准备,由于矿井系统较为简单,于2011年10月25日为期一天的阻力测定,地面基点监测大气压变化的实测数据见表1-2所示。

地面基点大气压变化实测数据表表1-2

时间

地点

大气压(Pa)

记录人

2011年10月25日8时30分

副斜井口

82950

2011年10月25日8时35分

82900

2011年10月25日8时40分

2011年10月25日8时45分

2011年10月25日8时50分

2011年10月25日8时55分

2011年10月25日9时0分

2011年10月25日9时05分

2011年10月25日9时10分

2011年10月25日9时15分

2011年10月25日9时20分

2011年10月25日9时25分

2011年10月25日9时30分

2011年10月25日9时35分

2011年10月25日9时40分

2011年10月25日9时45分

2011年10月25日9时50分

2011年10月25日9时55分

2011年10月25日10时0分

2011年10月25日10时05分

2.6、通风阻力测定数据处理的数学原理

对以上阻力测定的测点实测数据和地面基点监测大气压变化的实测数据进行计算机处理,数学处理的计算机数学模型如下。

2.6.1、风流大气热力参数计算的数学模型

1)对应于温度t的饱和蒸汽压力Ps

(Pa)(5)

——温度,℃(未特别说明下同);

Ps——分别对用于t的饱和水蒸气分压力,Pa。

2)空气含湿量的计算

(1)饱和含湿量

(Kg/Kg干空气)(6)

tw——温度,℃(未特别说明下同);

P——大气压力,Pa(未特别说明下同)。

(2)含湿量

(Kg/Kg干空气)(7)

3)水蒸气分压力

(Pa)(8)

4)空气密度

(Kg/m3)(9)

2.6.2、两测点间的通风阻力计算公式见式

(1)

2.6.3、测点附近各分支的通风风量计算公式

在通风阻力测量过程中,对测点周围的所有分支巷道均应选择断面规整处测定巷道风速以求风量,如图1-1所示,同时要认真量取巷道断面。

所有巷道风速均应进行三次测风,根据三次测风结果确定巷道平均风量。

巷道平均风量计算公式为:

Q=SV(10)

S——巷道断面积,m2;

V——巷道平均风速,m/s。

由于矿井大多数巷道为直角梯形巷道,算法较为方便,计算方法不单独列出;

部分巷道属半圆拱、三心拱巷道,采用式(3)、式(4)计算(各点的断面面积、风量详见《矿井通风系统图》风量标注)。

矿井风量采用体积流量,其值随空气密度及矿井瓦斯涌出发生变化,故矿井排风量大于矿井进风量。

为便于风网内的风量平衡,各风量测值均换算为标准状况下的风量,即大气压为82kpa,温度为15℃,空气密度为1.2kg/m3时的风量

=0.05138

(11)

式中:

——实测风量,m3/s;

P——巷道两端测点的绝对压力平均值,若压力单位采用mmHg,则上式中的数值应为0.3855;

——巷道中空气的平均温度,℃。

2.6.4、各巷道分支的风阻计算公式

为了了解各巷道分支的支护状况,同时为通风系统分析提供基础参数,在通风阻力测量的基础上,应将各巷道分支的风阻参数和摩擦阻力系数计算出来,其计算公式如下:

各巷道分支的风阻:

R12=

s2/m3(12)

h12、Q12——分别为分支巷道1、2之间的通风阻力和风量,计算公式见上,Pa、m3/s;

2.6.5、通风系统自然风压计算公式

整个通风系统的进风巷道和回风巷道存在标高差,同时存在着密度差,则必然存在着由于标高差和密度差所带来的自然风压。

对于煤矿通风系统来说,由于回风系统温度高、湿度大,并且常年不变,因此,大多数煤矿通风系统的自然风压均是帮助通风机工作,在冬季自然风压较大,夏季自然风压较小。

自然风压

计算公式如下:

=gz(

进-

回)(13)

g——重力加速度,m/s2;

——巷道的平均密度,Kg/m3;

——井的深度,m。

根据以上计算方式可得:

矿井自然风压

(Pa)

2.6.6、全矿井阻力测定的精度检验

由于仪表精度、测定技巧和各种因素的影响,测定时总会发生各种误差。

如果这些误差是在允许范围以内,那么测定结果是可用的。

为此,在测定资料汇总计算以后,应对全系统测定结果进行检查效验。

1)风量检验

根据流体连续特性,在空气密度不变的条件下,流进汇点的风量,应大于流出汇点的风量(主要因素是巷道的瓦斯涌出量及综采工作面的低负压抽放影响)。

则在重要的风流汇合点检验流入和流出该汇点的风量,其误差不应超过风表的允许误差值。

2)阻力检验

利用主要通风机风压、速压、自然风压和从矿井进风口至通风机入风口之间的主干测定路线通风阻力的相互关系,进行检验,其精度检验公式如下:

<5%(14)

——检验精度,%;

——主要通风机风峒处测点的静压,Pa;

——主要通风机风峒处测点的速压,Pa;

——矿井自然风压,Pa;

——主干测定路线各支路通风阻力之和,Pa。

2.7、通风阻力测定计算机处理结果

从井巷布置分析,主、副斜井及总回风斜井基本在同一标高,自然风压对主要通风机的作用较小。

在此,不作详细的说明。

各测点空气基本参数测定及计算结果表表1-3

测点编号

温度℃

湿度%

大气压Pa

1

15

67

82600

——

16

62

82650

3

58

4

15.5

76

82700

5

14

75

6

82750

7

68

82800

8

17

65

82850

9

82500

10

11

12

69

13

71

2.8、通风阻力测定的计算机处理结果分析

根据矿井通风阻力测量数据以及计算处理结果,本次通风阻力测量及其结果具有以下特点和结论:

2.8.1通风阻力测定结果的风量测定检验和阻力测定检验

1)风量测定检验

每个节点的风量测定结果均是平衡的,这在每个节点的风量测定过程中均进行了校核,如果节点的风量测定结果不平衡,必须重新测量,直到平衡为止。

当通风系统主干路线通风阻力测定完毕后,在通风机房读取主要通风机风压和速压,利用主要通风机风压、速压、自然风压和从矿井进风口至通风机入风口之间的主干测定路线通风阻力的相互关系,进行检验。

矿井的精度检验如下:

×

100%=4.65%<5%

通过测定计算,矿井通风系统总阻力为198.853Pa;

误差满足工程要求。

3)误差产生的主要原因

①在测定过程中,风门开启造成风流不稳定是引起测定误差的主要原因。

个别测点风流不稳,气压读数波动较大,造成读数误差。

②标高值误差。

2.8.2矿井风阻及等积孔

R=

=198.853÷

352=0.162(n·

s2/m8)<

0.35

Ac=1.19

=1.19×

35÷

(198.853)1/2=2.95(m2)

矿井通风难易程度属于较容易的矿井。

2.8.3通风系统阻力分布情况及分析

根据矿井通风阻力测定数据以及计算机处理结果,可知矿井进风段、用风段(含局部阻力)和回风段通风阻力的对比结果,见表1-3所示。

矿井通风系统进风段、用风段及回风段通风阻力对比结果表表1-3

通风路线

巷道长度(m)

通风阻力(Pa)

所占比例(%)

进风段

350

57.89

30.6

用风段

150

13.81

7.3

回风段

530

117.68

62.1

从表中可见,矿井通风阻力分布属于典型的大型生产稳定时期的分布状态,较为合理。

当然主要的通风阻力集中在回风段,进风段:

用风段:

回风段的阻力分配比为30.6:

7.3:

62.1,根据现场观测,造成回风段的阻力较高的主要原因是巷道断面狭小、不规正。

因此,应注意维护回风巷道的断面和支护状况,减少回风段的通风阻力,使矿井通风系统处于一个良好的状态,对于保证矿井安全生产,提高矿井产量提供良好的通风条件。

同时应该注意保持目前的通风状态,实现矿井生产的安全可持续发展。

表1-4为通过阻力测定所确定的整个矿井通风路线中除了人为调风增加实施阻力外的阻力较大的通风路段,该测定结果可结合实际作为改善通风现状,增强通风效果的依据。

通风路线中阻力较大的通风路段(人为因素除外)表1-4

巷道名称

始点

始点风速

m/s

密度Kg/m3

末点

末点风速m/s

m2

周界

m

长度m

风量m3/min

通风阻力Pa

风阻Kg/m7

1201采面

2.4

1.16

1.74

1.12

5.0

9.6

480

660

13.8

0.39

2.8.4矿井通风系统的有效风量、内部漏风和外部漏风分析

根据回风井通风机的风机房水柱计读数:

225Pa;

对应的通风机风量为:

2080m3/min;

另外,根据矿井通风系统风量测定和通风阻力测定的实测数据表及其计算结果表3、表5,进入回风斜井的风量为1980m3/min,因此可计算出回风井通风系统的外部漏风量为100m3/min。

2.8.5根据通风系统的阻力测定对通风系统现状的评价

从以上风量测定检验和阻力测定检验结果可见,本次测定结果是可靠可信的,是符合于实际的,完全可以作为现场实际的通风安全管理工作的理论依据。

根据矿井通风阻力测量数据以及计算结果,通风系统的总阻力为198.853Pa,通风风量为2080m3/min。

对比于主通风机测试的性能曲线,整个矿井通风系统和主通风机之间匹配较为合理,均处于合理工作范围内。

从矿井通风阻力的实测结果可见,矿井通风阻力分布属于稳定时期的阻力分布状态,较为合理。

62.1,根据现场观测,造成回风段的阻力较高的主要原因是回风巷道断面狭小;

另外,自然通风风压较小。

因此,

(1)应注意维护工作面巷道的断面和支护状况,减少回风段的通风阻力,使矿井通风系统处于一个良好的状态,对于保证矿井安全生产,提高矿井产量提供良好的通风条件;

(2)同时应该注意保持目前的通风状态,实现矿井生产的安全可持续发展。

根据矿井通风阻力测量数据以及计算机处理结果,可计算出矿井通风系统的等积孔为2.95m2,较为容易,属于通风系统状态较好的矿井。

2.9、结论

1)根据矿井通风阻力测定的风量测定检验和阻力测定检验结果可见,本次测定结果是可靠可信的,是符合于实际的,完全可以作为现场实际的通风安全管理工作的理论依据。

2)从矿井通风阻力的实测结果可见,矿井通风阻力分布属于稳定时期的阻力分布状态,非常合理。

通风阻力在进风段:

回风段的分配比为30.6:

62.1,根据现场观测,造成用风段的阻力较高的主要原因是巷道断面狭小、不规正。

因此,应注意维护回风巷道的断面和支护状况,减少回风段的通风阻力,使矿井通风系统处于一个良好的状态,对于保证矿井安全生产。

3)根据矿井通风阻力测定数据以及计算机处理结果,计算出矿井总风阻及等积孔为0.39n·

s2/m8和2.95m2,较为容易,属于通风系统状态较好的矿井。

4)根据矿井通风阻力测定数据以及计算结果可见,矿井通风系统的自然风压为:

175.56Pa。

5)根据实测结果可计算出,矿井通风系统外部漏风率为4.8%,内部漏风率为2.6%,符合《矿井通风质量标准及检查评定办法》的规定。

充分说明矿井通风系统中风门质量和巷道密闭质量基本符合要求,但必须注意维护和加强,否则,内部漏风率将会超标,导致通风系统不能满足矿井安全生产的需要。

6)根据通风阻力测量数据以及计算处理结果,计算出矿井通风系统的总阻力为198.853Pa,通风风量为2080m3/min。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 化学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2